
Vector Quantization Pretraining for EEG Time Series 
with Random Projection and Phase Alignment

Haokun Gui
Xiucheng Li

Xinyang Chen

School of Computer Science and Technology,
Harbin Institute of Science and Technology 

(Shenzhen), China



R e p r e s e n t a t i o n s  o f  t h e  E E G  d a t a

Self-Supervised Models: Using proxy tasks to get the representations of EEG 

data

Contrastive-loss-based Self-supervised learning 
model1

1BIOT: Cross-data Biosignal Learning in the Wild

Cons: Hard to construct the positive/negative 
pairs；Unable to be scalable



S e m a n t i c  U n i t s

Self-Supervised Models: Reconstructive-based model
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• The significance of semantic units has been extensively studied in Natural 
Language Processing (NLP) and Computer Vision (CV), demonstrating their 
crucial role during the pre-training stage.

• Easily scalable.
• How can we define a well-defined semantic unit in EEG data?



R e p r e s e n t a t i o n s  o f  t h e  E E G  d a t a

Self-Supervised Models: Using proxy tasks to get the representations of EEG 

data

Reconstruct-based Self-supervised Learning 
model1

1A Time Series is Worth 64 Words: Long-term Forecasting with Transformers

Cons: Prone to be corrupted; Noise is also 
encoded into the representations
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S e m a n t i c  U n i t s

Well-defined Semantic Unit 

Features of EEG Signals:
• Low signal-to-noise ratio
• Periodic nature

Possible Problems:
• Data corruption
• Small lag or shift in the semantic 

units



R e p r e s e n t a t i o n s  o f  t h e  E E G  d a t a

Our Method: Adding a Phase-Alignment module and a Quantization module to 

obtain well-defined semantic units.

The pipeline of the pre-training 
stage of VQ-MTM.
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S e m a n t i c  U n i t s

Two existing challenges:
• High noise ratio
• Shifting or small lag in the semantic 

units
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Solutions
• Quantization Module
• Phase-Alignment Module

Overview of the VQ-MTM



S e m a n t i c  U n i t s

Quantization Module

However, the Quantization Module will introduce some problems:
• Determining how to obtain labels in the absence of explicit labels.
• Establishing a method to measure the distance between semantic units.

Thus, we propose the following solutions:
• We calculate the similarity of tokens with pre-defined (randomly initialized) 

tokens to generate the corresponding labels.
• Drawing from the concept of correlation, we use cosine similarity as the metric 

to calculate the distance between semantic units.

To solve the problem of high noise ratio, we introduce the quantization module, 
which is not sensitive to noise due to its quantization mechanism.



Q u a n t i z a t i o n

Random Projection

Problems: The representation dimensions of template units might not match the 
length of the semantic units

Key Points (JL-Lemma):

where

* The problem can be solved by leveraging the Johnson-Lindenstrauss Lemma, 
using a randomly initialized mapping from the semantic unit’s length to the 
template unit’s representation.

Pros: Introducing minimal additional computation costs since the added parameters 
are all frozen



P h a s e  A l i g n m e n t  M o d u l e

Problems: Inability to maintain 
consistency of variant labels.
Goals: Aligning the variations in the 
raw data.

Key Points in Phase Alignment:

Formula: 
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E x p e r i m e n t s

Computation cost during the pre-
training stage

Experiment results on TUSZ dataset



C o n c l u s i o n

Phase-Alignment Module
• Avoids mislabeling
• Ensures that data variations are projected onto the same template

Quantization Module
• Generates pseudo labels for the raw data

Delivers better performance compared to previous methods, while 
maintaining comparable computational efficiency.

Conclusion


