

Vector Quantization Pretraining for EEG Time Series with Random Projection and Phase Alignment

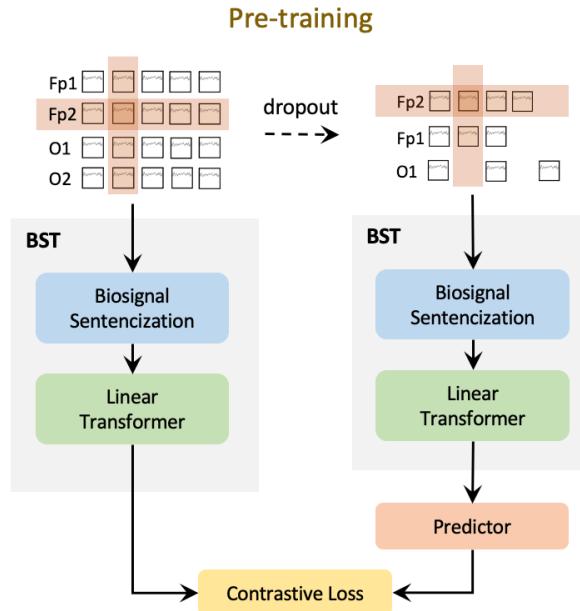
Haokun Gui

Xiucheng Li

Xinyang Chen

School of Computer Science and Technology,
Harbin Institute of Science and Technology
(Shenzhen), China

Self-Supervised Models: Using proxy tasks to get the representations of EEG data

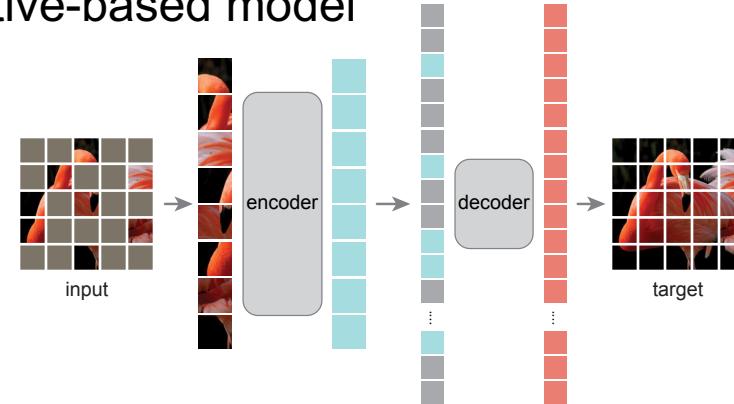


Contrastive-loss-based Self-supervised learning model¹

Cons: Hard to construct the positive/negative pairs; Unable to be scalable

Self-Supervised Models: Reconstructive-based model

Input	[CLS]	my	dog	is	cute	[SEP]	he	likes	play	#ing	[SEP]
Token Embeddings	$E_{[CLS]}$	E_{my}	E_{dog}	E_{is}	E_{cute}	$E_{[SEP]}$	E_{he}	E_{likes}	E_{play}	$E_{#ing}$	$E_{[SEP]}$
Segment Embeddings	E_A	E_A	E_A	E_A	E_A	E_A	E_B	E_B	E_B	E_B	E_B
Position Embeddings	E_0	E_1	E_2	E_3	E_4	E_5	E_6	E_7	E_8	E_9	E_{10}

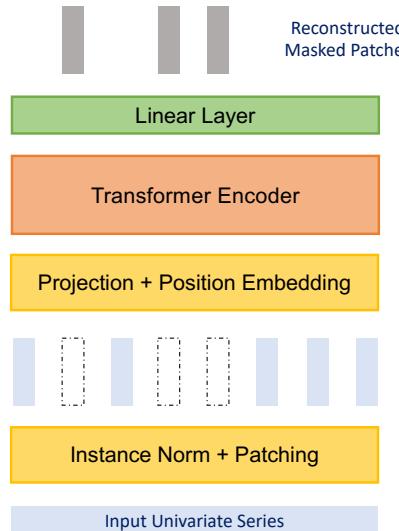


Treat words as basic semantic units

Treat patched figures as semantic units

- The significance of semantic units has been extensively studied in Natural Language Processing (NLP) and Computer Vision (CV), demonstrating their crucial role during the pre-training stage.
- Easily scalable.
- How can we define a well-defined semantic unit in EEG data?

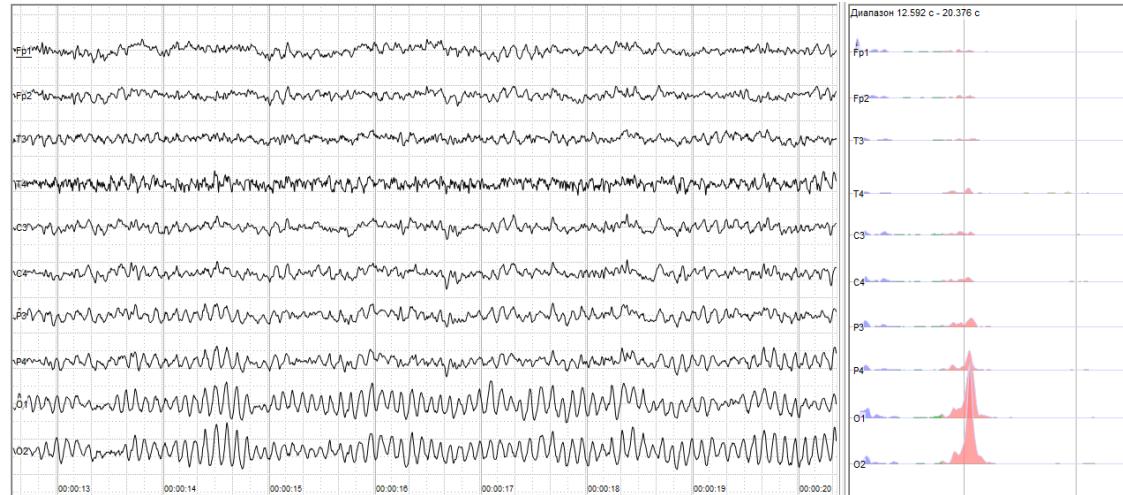
Self-Supervised Models: Using proxy tasks to get the representations of EEG data



Reconstruct-based Self-supervised Learning model¹

Cons: Prone to be corrupted; Noise is also encoded into the representations

Well-defined Semantic Unit



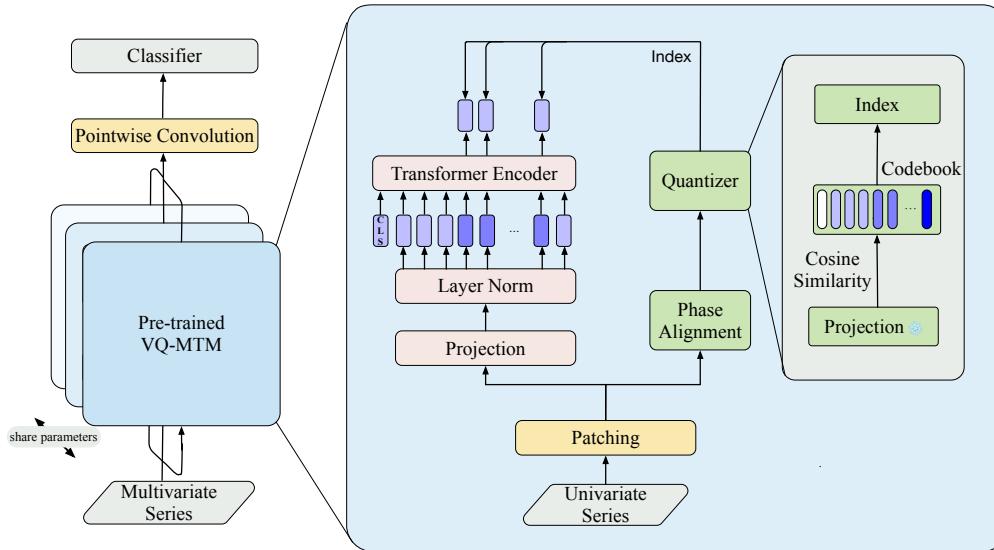
Features of EEG Signals:

- Low signal-to-noise ratio
- Periodic nature

Possible Problems:

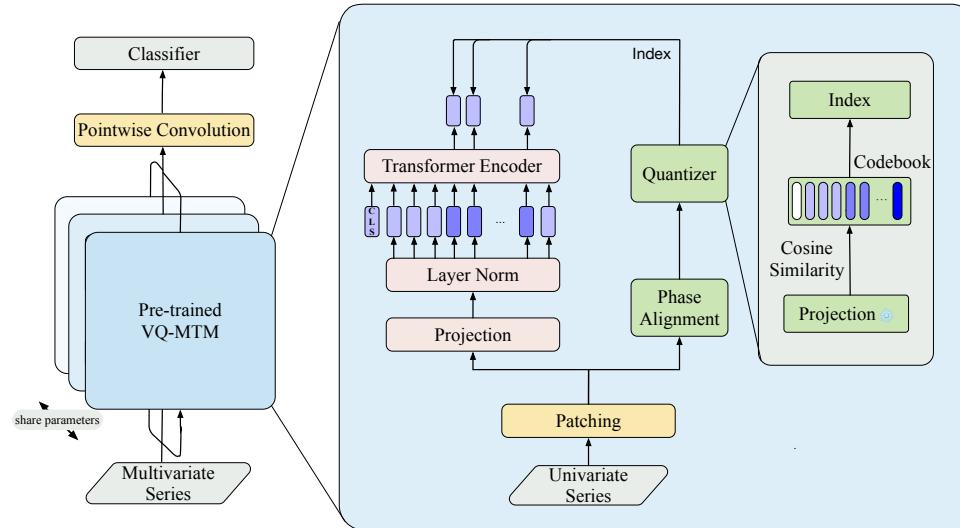
- Data corruption
- Small lag or shift in the semantic units

Our Method: Adding a Phase-Alignment module and a Quantization module to obtain well-defined semantic units.



The pipeline of the pre-training stage of VQ-MTM.

Overview of the VQ-MTM



Two existing challenges:

- High noise ratio
- Shifting or small lag in the semantic units

Solutions

- Quantization Module
- Phase-Alignment Module

Quantization Module

To solve the problem of high noise ratio, we introduce the quantization module, which is not sensitive to noise due to its quantization mechanism.

However, the Quantization Module will introduce some problems:

- Determining how to obtain labels in the absence of explicit labels.
- Establishing a method to measure the distance between semantic units.

Thus, we propose the following solutions:

- We calculate the similarity of tokens with pre-defined (randomly initialized) tokens to generate the corresponding labels.
- Drawing from the concept of correlation, we use cosine similarity as the metric to calculate the distance between semantic units.

Random Projection

Problems: The representation dimensions of template units might not match the length of the semantic units

Key Points (JL-Lemma):

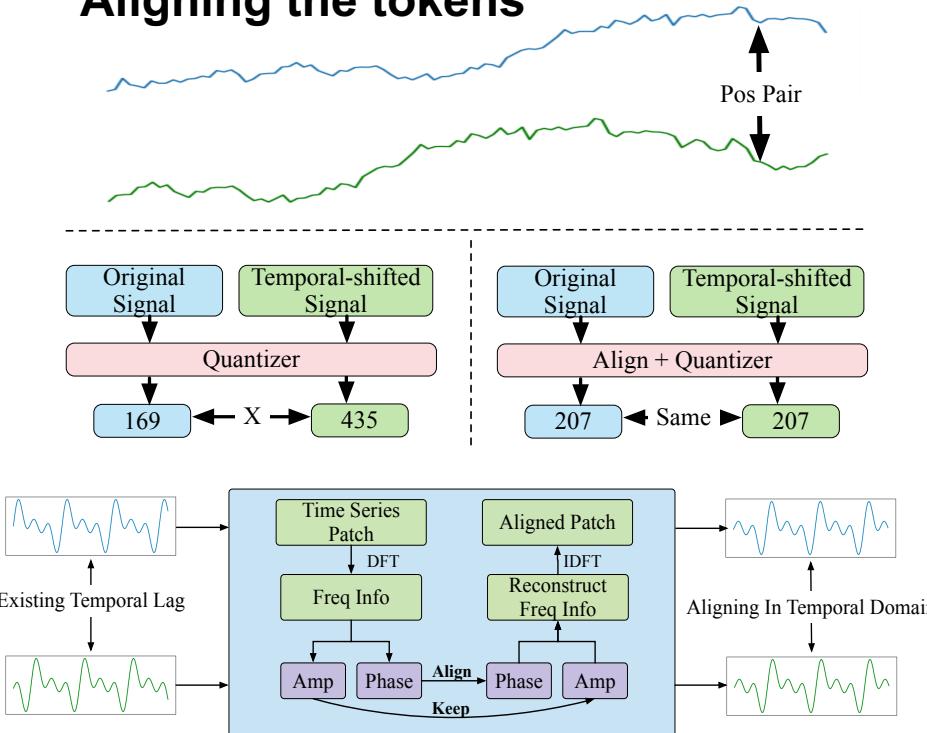
$$\Pr [|\langle \mathbf{v}_i, \mathbf{v}_j \rangle - \langle \mathbf{u}_i, \mathbf{u}_j \rangle| \leq \epsilon] \geq 1 - \frac{2}{n},$$

where $\mathbf{v}_i = \mathbf{A}\mathbf{u}_i$

Pros: Introducing minimal additional computation costs since the added parameters are all frozen

* The problem can be solved by leveraging the Johnson-Lindenstrauss Lemma, using a randomly initialized mapping from the semantic unit's length to the template unit's representation.

Aligning the tokens



Problems: Inability to maintain consistency of variant labels.

Goals: Aligning the variations in the raw data.

Formula:

$$\hat{\mathbf{z}} = \text{DFT}(\mathbf{z}),$$

$$\hat{\mathbf{z}}_{\text{aligned}} = \text{PhaseAlign}(\hat{\mathbf{z}}),$$

$$\mathbf{z}_{\text{aligned}} = \text{IDFT}(\hat{\mathbf{z}}_{\text{aligned}}).$$

Key Points in Phase Alignment:

$$\theta_k = \arg(\hat{z}_k) - k \cdot \arg(\hat{z}_1),$$

$$\hat{\mathbf{z}}_{\text{aligned}} = [|\hat{z}_k| e^{i\theta_k}]_{k=0}^{N-1}.$$

Experiment results on TUSZ dataset

MODEL	SEIZURE DETECTION		SEIZURE CLASSIFICATION	
	AUROC	12-s	WEIGHTED F1-SCORE	60-s
12-s	60-s	12-s	60-s	
DCRNN	0.836	0.753	0.603	0.478
TIMESNET	0.845	0.713	0.504	0.475
MAE	0.799	0.747	0.592	<u>0.585</u>
PATCHTST	<u>0.866</u>	<u>0.834</u>	<u>0.607</u>	0.554
SIMMTM	0.653	0.637	0.491	0.455
VQ-MTM	0.887	0.904	0.620	0.615
IMPROVEMENT(%)	2.42	8.39	2.14	5.13

Computation cost during the pre-training stage

MODEL	SIMMTM	BIOT	MAE	VQ-MTM
FLOPS	1.78G	7.84G	0.15G	0.12G
PARAMS	0.53M	1.74M	2.50M	0.20M

Conclusion

Phase-Alignment Module

- Avoids mislabeling
- Ensures that data variations are projected onto the same template

Quantization Module

- Generates pseudo labels for the raw data

Delivers better performance compared to previous methods, while maintaining comparable computational efficiency.