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How can an agent with informational advantage, strategically reveal 
this information to another agent to influence their behaviour?

Information Design



• Two player game between a sender, who gets to observe a world state , 
and a receiver who gets to take an action [1].  

• The utility of both players depend on this action along with the world state.

• Complete Information - sender knows receiver utility 

• Both players share a common prior belief  about the possible world states . 

• The sender can commit to strategically revealing her knowledge of the world state 
through signaling. 

θ ∈ Θ

μ θ

1. Bayesian Persuasion



Sender - Professor Receiver - Hiring Manager

•  - student quality 

•  

• Utility  :  +1 if student is hired

• Utility  : +1 if hiring good student or 

                              not hiring bad ones  

θ {good, bad}
a ∈ {hire, not hire}

u(a, θ)
w(a, θ)



Sender - Professor Receiver - Hiring Manager
 : +1 if student hiredu(a, θ)  : +1 if right decision is madew(a, θ)

Common prior on  
student quality 

μ(θ = good) : 0.3



But I get to  
see the quality

Sender - Professor Receiver - Hiring Manager

Common prior on  
student quality 

μ(θ = good) : 0.3

 : +1 if student hiredu(a, θ)  : +1 if right decision is madew(a, θ)



But I get to  
see the quality

Sender - Professor Receiver - Hiring Manager

I commit to signaling as follows 
 
  Always say hire the student!

 : +1 if student hiredu(a, θ)  : +1 if right decision is madew(a, θ)

Common prior on  
student quality 

μ(θ = good) : 0.3



But I get to  
see the quality

Sender - Professor Receiver - Hiring Manager

I commit to signaling as follows 
 
  Always say hire the student!

 
    That’s totally    
duninformative!

 : +1 if student hiredu(a, θ)  : +1 if right decision is madew(a, θ)

not hire a * =

 𝔼[u(a*, θ)] = 0

Common prior on  
student quality 

μ(θ = good) : 0.3

𝔼[w(a*, θ )] = 0.7



But I get to  
see the quality

Sender - Professor Receiver - Hiring Manager

I commit to signaling as follows 
 
   
  
θ = good ⟹ say hire
θ = bad ⟹ don't hire

 
    That’s fully    
dinformative!

 : +1 if student hiredu(a, θ)  : +1 if right decision is madew(a, θ)

hire if s=hire 
! hire if s= ! hire 

a * =
a * =

Common prior on  
student quality 

μ(θ = good) : 0.3

 𝔼[u(a*, θ)] = 0.3
𝔼[w(a*, θ )] = 1.0



But I get to  
see the quality

Sender - Professor Receiver - Hiring Manager

I commit to signaling as follows 
 
   
  say hire 42% of the time
θ = good ⟹ say hire
θ = bad ⟹

 : +1 if student hiredu(a, θ)  : +1 if right decision is madew(a, θ)

Common prior on  
student quality 

μ(θ = good) : 0.3



But I get to  
see the quality

Sender - Professor Receiver - Hiring Manager

 = 1π(s = hire |θ = good)

I commit to signaling as follows

 = 0.42π(s = hire |θ = bad)

 : +1 if student hiredu(a, θ)  : +1 if right decision is madew(a, θ)

Common prior on  
student quality 

μ(θ = good) : 0.3



But I get to  
see the quality

Sender - Professor Receiver - Hiring Manager

 = goodθ

 : +1 if student hiredu(a, θ)  : +1 if right decision is madew(a, θ)

Common prior on  
student quality 

μ(θ = good) : 0.3
Hire!

 = 1π(s = hire |θ = good)

I commit to signaling as follows

 = 0.42π(s = hire |θ = bad)



Common prior on  
student quality 

μ(θ = good) : 0.3

But I get to  
see the quality

Sender - Professor Receiver - Hiring Manager

 = goodθ

Hire!

   
  
P(θ |s = hire) ∝ π(s = hire |θ)μ(θ)
a* = argmaxaw(a, θ)P(θ |s = hire)

 : +1 if student hiredu(a, θ)  : +1 if right decision is madew(a, θ)

 = 1π(s = hire |θ = good)

I commit to signaling as follows

 = 0.42π(s = hire |θ = bad)



Common prior on  
student quality 

μ(θ = good) : 0.3

But I get to  
see the quality

Sender - Professor Receiver - Hiring Manager

 = goodθ

Hire!

   
  
P(θ |s = hire) ∝ π(s = hire |θ)μ(θ)
a* = argmaxaw(a, θ)P(θ |s = hire)

w(θ = good, a*)u(θ = good, a*)

 : +1 if student hiredu(a, θ)  : +1 if right decision is madew(a, θ)

𝔼[u(a*, θ )] = 0.6 𝔼[w(a*, θ )] = 0.7

 = 1π(s = hire |θ = good)

I commit to signaling as follows

 = 0.42π(s = hire |θ = bad)



• Sender must commit to signaling scheme before realization 

• When sender is designing/choosing signaling scheme they have no more 
information than receiver.


• Chooses a scheme to maximize expected ex-ante utility 

• In the standard setting, under mild assumptions optimal scheme can be solved 
using a linear program [2]. 

1. Bayesian Persuasion - Details



2. Motivations

Real time traffic  
and demand data

Observes

• In many settings involving persuasion, there maybe multiple informationally 
advantageous senders looking to persuade a single agent.



• In many settings involving persuasion, there maybe multiple informationally 
advantageous senders looking to persuade a single agent.

2. Motivations

Mr. Frog wants a pick-up  
near the marshReal time traffic  

and demand data

Observes Signals



• Senders jointly observe a realization , 


• Sender simultaneously commit to signaling ; receiver observes 


• Receiver updates belief based on joint signal and takes their optimal action.

θ ∼ μ
πi(s |θ) s̄ ∼ ∏πi

2. Multi-Sender Persuasion Model

Multi-leader single follower Stackelberg game.

Simultaneous interaction between senders; sequential interaction with receiver

•  senders with utility , and 1 receiver with utility 

• All senders and receiver have a common prior 

n ui(θ, a) w(θ, a)
μ(θ)



• Sender utility: ui(πi, π−i) = ∑
θ

∑̄
s∈Sn

π̄(s̄ |θ)ui(θ, a*)

2. Multi-Sender Persuasion Model

Nash equilibrium between sender’s signaling strategy given receiver best responds.

∀i ∀πi ui(πeq

i , π̄eq
−i) ≥ ui(πi, π̄eq

−i)

• Senders jointly observe a realization , 


• Sender simultaneously commit to signaling ; receiver observes 


• Receiver updates belief based on joint signal and takes their optimal action.

θ ∼ μ
πi(s |θ) s̄ ∼ ∏πi



[7] studies multi-sender setting wherein senders can arbitrarily correlate their signals 
by conditioning on others realizations - leads to some simplifications. 

[8] studies multi-sender persuasion where senders commit to schemes sequentially. 
Different solution concept: sub-game perfect equilibrium.

[9] Study a simultaneous and independent model, but with zero sum sender utilities. 

• We consider senders committing to simultaneous and independent schemes, but 
with no restriction on utility or state/action/signal structure.


• Prior works provide little computational insights on the problem.

2. Related Works



• [6] notes that under two conditions an equilibrium exists that fully reveals the 
realized state to the receiver, allowing them to achieve maximal utility:


• (1) there is a unique optimal action for the receiver at each state.

• (2) The signal space , the state space.  

• (Equilibrium): Any sender chooses to deterministically map state to signal.

|S | = |Θ |

2. Equilibrium Characterization



• [6] notes that under two conditions a full information equilibrium exists:

• (1) there is a unique optimal action for the receiver at each state.

• (2) The signal space , the state space.  

• We prove that condition 2 can be significantly relaxed. 

• Theorem: A full information equilibrium exists if:

• (1) there is a unique optimal action for the receiver at each state.

• (2’) The signal space 

|S | = |Θ |

|S | ≥ min( |Θ |1/n−1 , |A |1/n−1 )

2. Equilibrium Characterization



• Map each state to a deterministic set of signals such that:

• each state is uniquely identifiable by  signals.

• Leverages an idea from error correcting codes. 

• If , can interpret full information as revealing optimal action at each state.

n − 1

|Θ | > |A |

2. Equilibrium Characterization
• Theorem: A full information equilibrium exists if:


• (1) there is a unique optimal action for the receiver at each state.

• (2’) The signal space |S | ≥ min( |Θ |1/n−1 , |A |1/n−1 )



• We have relaxed the 2nd conditions. But how about the first?


• Theorem: If condition (1) does not hold, then under some tie-breaking rule, 
computing the Nash equilibrium is PPAD-Hard.


• Reduction from finding equilibrium in two-player games with binary utilities.

2. Equilibrium Characterization
• Theorem: A full information equilibrium exists if:


• (1) there is a unique optimal action for the receiver at each state.

• (2’) The signal space  |S | ≥ min( |Θ |1/n−1 , |A |1/n−1 )



• In single sender persuasion, optimal signaling scheme (i.e. sender’s best strategy) 
can be expressed as a linear program. 

• In multi-sender persuasion, a sender ’s best response is their optimal signaling 
scheme for a fixed set of scheme of other senders, .


Theorem: Even for 2 senders, computing a single sender’s best response is NP-
Hard. Further, it is NP-Hard to even approximate the best response. 

i

π̄−i

2. Best Response



• An involved reduction from the hardness of public persuasion with  receivers.k

2. Best Response Hardness

• 1 sender  receivers; public scheme

• Common prior  with states.

• Binary action receivers with utility 


• Sender utility depends on receiver 

k
μ(θ) |Θ |

wj(θ, a)

uj(θ, a)

Public Persuasion

•  senders and 1 receiver 

•  states  

• The receiver action space  
 where 

2

Θ′￼= Θ ∪ {θ̄1, …θ̄k}

A = A+ ∪ A−
∪ a∞ |A+ | = |A− | = k

Equivalent Multi-Sender Persuasion



•  states:


• When  happens, single receiver utility 


• When  happens, very bad for receiver to take anything except  

• Non-best responding sender’s signaling scheme uses  signals such that:


• Realization  implies receiver will take action  

Θ′￼= Θ ∪ {θ̄1, …θ̄k}
θ ∈ Θ w(a+

j , θ) = wj(a+, θ)

θ̄j {a+
j , a−

j }

k
sj {a+

j , a−
j }

2. Best Response Hardness

 possible signal realization of non-best responding sender, the single 
receiver’s plausible actions mimic that of the  receiver in public persuasion

∀ k
kth



Given the difficulty of best-response and non trivial equilibrium in this setting, we 
propose deep learning methods for finding local equilibria.


• Challenging due to the non-convex discontinuous utility landscape 

2. Deep Learning Approach



• Established the difficulty of computing equilibrium in the general setting, even with 
access to complete information.  

• Local Equilibrium: No profitable deviation in a local neighborhood. Popular notion in 
deep learning for game. 


• Can we use deep learning methods to find local equilibrium of this game with only 
sample access to utility?


• Key Challenge: Joint utility landscape is non-convex and discontinuous. 

2. Deep Learning Approach



Propose novel architecture to approximate this utility with sample access.

2. Experimental Results



2. Experimental Results
When paired with extra-gradient algorithm, we find local equilibria that outperforms 

other methods as well as full revelation equilibrium.



Thank you!
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