

Data-Efficient Molecular Generation with Hierarchical Textual Inversion

<u>Seojin Kim¹</u>, Jaehyun Nam¹, Sihyun Yu¹, Younghoon Shin², Jinwoo Shin¹

¹Korea Advanced Institute of Science and Technology (KAIST) ²Korea University

ICML 2024

Data-Efficient Molecular Generation

Data-efficient molecular generation is important in chemical application:

- Prior molecular generation approaches: Assume abundant training data, e.g., QM9 contains 130k molecules
- **Difficulty of the collection from target distribution**: Require experimental verification, e.g., drug-likeness on HIV
- Hi-Mol: We propose a novel framework for data-efficient molecular generation

Few-shot adaptation of molecular foundation models generates high-quality molecules in a data-efficient manner

Textual Inversion in Text-to-Image Foundation model

Textual inversion introduces a new word that represents a common concept from a few images:

- The embedding of new word [S*] is optimized to reconstruct given images of a common concept
- Hi-Mol: We propose a novel textual inversion framework for data-efficient molecular generation

Hi-Mol effectively captures the distribution of limited number of molecules with molecular foundation model

[Gal et al., 2022] An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion, arXiv 2022

Naïve application of textual inversion into molecular foundation models does not work well in general

- Molecules with the common property do not necessarily share visually similar molecular structures
- Modeling such molecules with only "shared" word cannot effectively capture the common concept of molecules

Training prompt	$FCD \downarrow$	NSPDK \downarrow	Valid. ↑	Unique. †	Novelty \uparrow
The molecule is a $[S^*]$.	7.913	0.041	96.2	19.3	39.5
I he molecule is a $[S^*][D_n^*].$	0.486	0.002	93.8	70.8	72.3
The molecule is a $[S^*][I_{c_n}^*][D_n^*]$.	0.434	0.001	90.7	75.8	73.5

Hierarchical textual inversion: low- (or high-) level features of molecules are separately learned

- We introduce 3 kinds of words: [S*] (shared), [I*] (intermediate), [D*] (detail)
- Shared word [S*]: A single word for whole dataset, captures overall semantic of target molecules

$$\mathcal{L}(\theta; \mathbf{x}_n) \coloneqq \min_{k \in [1, K]} \mathcal{L}_{\texttt{CE}}\Big(\texttt{softmax}\big(f(\texttt{``The molecule is a } [S^*][I_k^*][D_n^*]")\big), \ \texttt{SMILES}(\mathbf{x}_n)\Big)$$

Hierarchical textual inversion: low- (or high-) level features of molecules are separately learned

- We introduce 3 kinds of words: [S*] (shared), [I*] (intermediate), [D*] (detail)
- Intermediate words [I_k*]: Word assigned for k-th cluster, captures cluster-wise semantics with 1 <= k <= K

$$\mathcal{L}(\theta; \mathbf{x}_n) \coloneqq \min_{k \in [1, K]} \mathcal{L}_{\mathsf{CE}}\Big(\texttt{softmax}\big(f(\text{``The molecule is a } [S^*][I_k^*][D_n^*]")\big), \text{ SMILES}(\mathbf{x}_n)\Big)$$

k is automatically assigned by multiple-choice learning

Hierarchical textual inversion: low- (or high-) level features of molecules are separately learned

- We introduce 3 kinds of words: [S*] (shared), [I*] (intermediate), [D*] (detail)
- Detail words [D_n*]: Word assigned for n-th molecule, captures molecule-wise detailed semantics with 1 <= n <= N

$$\mathcal{L}(\theta; \mathbf{x}_n) \coloneqq \min_{k \in [1, K]} \mathcal{L}_{\mathsf{CE}}\Big(\texttt{softmax}\big(f(\text{``The molecule is a } [S^*][I_k^*][D_n^*]")\big), \ \texttt{SMILES}(\mathbf{x}_n)\Big)$$

Embedding interpolation-based sampling: Generation via interpolation of learned word embeddings

- We randomly interpolate detail token embeddings and the corresponding intermediate token embeddings
- Then, we forward obtained interpolated token embeddings into the original molecular foundation model

Stage 2. Embedding interpolation-based sampling
A similar chemical of
$$[S^*]$$
 $[\bar{I}^*]$ $[\bar{D}^*]$
 \downarrow
Large text-to-molecule model
Novel molecule: CCC1CC(=0)01
 $\lambda ([S^*] [I_1^*] [D_1^*]) + (1 - \lambda)([S^*] [I_2^*] [D_N^*])$
Interpolation between two molecule tokens

$$egin{aligned} ig(ar{\mathbf{i}},ar{\mathbf{d}}ig) &\coloneqq ig\lambdaig(\mathbf{i}_{c_i},\mathbf{d}_iig) + (1-\lambda)ig(\mathbf{i}_{c_j},\mathbf{d}_jig), \ \mathbf{x} &\coloneqq fig(extsf{``A similar chemical of } [S^*][ar{I}^*][ar{D}^*]"ig) \end{aligned}$$

Experiments: HI-Mol is effective for limited training samples

We report the molecular generation performance of active (label-1) molecules in MoleculeNet benchmark

- MoleculeNet contains limited active molecules compared to conventional datasets, e.g., 1,232 molecules in HIV.
- Best scores are marked bold; Grammar is marked when the method forces the validity of generated molecules.

Dataset	Method	Class	Grammar	Active. \uparrow	FCD \downarrow	NSPDK \downarrow	Valid. \uparrow	Unique. ↑	Novelty \uparrow
HIV	JT-VAE [13]	Fragment	1	0.0	38.8	0.221	100	25.4	100
	PS-VAE [33]	Fragment	1	3.7	21.8	0.053	100	91.4	100
	STGG [8]	SMILES	1	1.6	20.2	0.033	100	95.8	100
	CRNN [3]	SMILES	×	3.3	29.7	0.064	30.0	100	100
	GDSS [9]	Graph	×	0.0	34.1	0.080	69.4	100	100
	GSDM [27]	Graph	×	0.0	32.7	0.124	52.0	90.4	100
	DiGress [7]	Graph	×	0.0	26.2	0.067	17.8	100	100
	HI-Mol (Ours)	SMILES	×	11.4	19.0	0.019	60.6	94.1	100
BBBP	JT-VAE [13]	Fragment	1	80.6	37.4	0.202	100	10.8	100
	PS-VAE [33]	Fragment	1	84.9	17.3	0.039	100	91.6	100
	STGG [8]	SMILES	1	89.1	14.4	0.019	99.8	95.8	100
	CRNN [3]	SMILES	×	88.8	20.2	0.026	54.0	100	100
	GDSS [9]	Graph	×	0.0	35.7	0.065	88.4	99.2	100
	GSDM [27]	Graph	×	11.6	26.4	0.086	64.0	94.3	100
	DiGress [7]	Graph	×	8.2	17.4	0.033	43.8	94.6	100
	HI-Mol (Ours)	SMILES	X	94.4	11.2	0.011	78.8	92.9	100

9

Experiments: HI-Mol is effective for limited training samples

We report the molecular generation performance on small subset of QM9 dataset

- Hi-Mol outperforms prior methods when trained only with 2% of the entire training set of QM9 dataset.
- Best scores are marked bold; Grammar is marked when the method forces the validity of generated molecules.

Method	Class	Grammar	$FCD \downarrow$	NSPDK \downarrow	Valid. ↑	Unique. †	Novelty \uparrow
STGG [†] [8]	SMILES	1	0.585	-	100	95.6	69.8
$CG-VAE^{\dagger}$ [34]	Graph	1	1.852	-	100	98.6	94.3
GraphAF [28]	Graph	×	5.268	0.020	67	94.5	88.8
GraphDF [29]	Graph	×	10.82	0.063	82.7	97.6	98.1
MoFlow [30]	Graph	×	4.467	0.017	91.4	98.7	94.7
EDP-GNN [31]	Graph	×	2.680	0.005	47.5	99.3	86.6
GraphEBM [32]	Graph	×	6.143	0.030	8.22	97.8	97.0
GDSS [9]	Graph	×	2.900	0.003	95.7	98.5	86.3
GSDM* [27]	Graph	×	2.650	0.003	99.9	-	-
HI-Mol (Ours; 2%)	SMILES	×	0.434	0.001	90.7	75.8	73.5
HI-Mol (Ours; 5%)	SMILES	×	0.412	0.001	89.4	85.8	70.4

Experiments: HI-Mol generates more faithful molecules

Molecules from Hi-Mol framework introduces novel substructures preserving some original substructures

- For example, Hi-Mol introduces 4- and 6- membered rings while preserving several ester groups
- We report the most similar molecule with given query molecule in terms of Tanimoto similarity

Hi-Mol: Data-Efficient Framework for Molecular Generation

Summary: We propose a simple yet effective data-efficient framework for molecular generation

We propose Hi-Mol = Hierarchical textual inversion for molecular generation

- 1. Hierarchical textual inversion with text-to-molecule model and embedding interpolation sampling
- 2. Molecular generation: Hi-Mol shows superior performance even with smaller number of training samples
- 3. Compositionality: Can be used to generate molecules with more flexibility

Thank you