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Problem setup

Aim is to find

ψ∗ := inf
x∈X

E(l(x, Z)),

where Z is a random variable representing the data and

l (·, Z) is a loss function indexed by parameter x ∈ X .

Approximate this problem by solving

ψ̂n := inf
x∈X

1
n

n∑
i=1

l(x, Zi),

where the data Zi has the same distribution as Z .

On the lack of a test set

This is a different paradigm to the usual ML paradigm. ψ∗

is a measure of howwell a model class could possiblywork

on a given problem. We treat ψ̂n as an estimate of ψ∗ and

hence as an estimate of the optimal performance.

Empirical process background

Let

H = {z 7→ l(x, z) : x ∈ X } (1)

For any τn → ∞, let Fn : Ω × H → R be given by

Fn(ω, h) = τn

{
1
n

n∑
i=1

h (Zi(ω)) − Eh (Z)

}
. (2)

We will often assume that there is a random variable F
such that

Fn F

where denotes weak convergence (convergence in dis-

tribution). That is, we will often assume a type of central

limit theorem on functions.

Main result

Define

Sε = {x ∈ X : E [l (x, Z)] ≤ ψ∗ + ε} .
If

1. l is bounded
2. Fn F for some bounded Borel measurable F

then

τn

(
ψ̂n − ψ∗

)
 lim

ε↘0
inf
x∈Sε

F (x)

and

ψ̂n = lim
ε↘0

inf
x∈Sε

{
f̂n (x) − f (x) + ψ∗

}
+ oP∗

(
τ−1
n

)
.

Sufficient conditions

The most common way to generate Fn  F is to assume

H is Donsker. This occurs when, τn =
√
n, (Zi) are iid,

suph∈H |h (z) − EZh| < ∞, for each z ∈ Z , and F is a zero-

mean Gaussian process with covariance

E [F (h)F (g)] = E {[h (Z) − Eh (Z)] [g (Z) − Eg (Z)]} .
The idea is that if a class of functions is not very ‘com-

plicated’ then it will be Donsker. Sufficient conditions are

known for

1. convex function classes [6, Thm 2.7.14]

2. monotone function classes [6, Thm 2.7.9]

3. function classes with Holder-derivatives [6, Cor

2.7.2, Cor 2.7.3]

When the data is iid, all binary classification, feed forward

neural networks are Donsker. Similar results are known for

non-iid data.

For more information on Donsker classes see [1] and [6,

Ch. 2].

Applications to model selection

Let X1,X2 be a pair of parameter spaces defining corre-

sponding model spaces H1,H2 analogous to (1). Define

F 1
n, F

2
n as in (2) but with H replaced by H1 and H2.

Let

ψ∗
k = inf

xk∈Xk

E [l (xk, Z)]

be the minimum expected risk obtained by models in Hk

and let

ψ̂k,n = inf
xk∈Xk

1
n

n∑
i=1

l (xk, Zi) .

We aim to find k∗ = arg mink∈{1,2}ψ
∗
k That is, we want to

find the model class that can possibly perform the best on

the problem.
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Model selection result

If

1. l is bounded
2. F 1

n  F 1 and F 2
n  F 2 with F 1, F 2 bounded and

Borel measurable.

Assuming ψ∗
0 = ψ∗

1 we have

τn(ψ̂1,n − ψ̂0,n) F ∗, where

F ∗ = lim
ε↘0

inf
x∈S1(ε)

F (x) − lim
ε↘0

inf
x∈S0(ε)

F (x),

and

Si(ε) = {x ∈ Xi : E [l (x, Z)] ≤ ψ∗
i + ε} .

Then for any α ∈ [0, 1],

lim sup
n→∞

P∗
(
ψ̂n,1 ≤ ψ̂n,0 + cα

τn

)
≤ α, where

cα = sup
{
c ∈ R : P(F ∗ ≤ c) ≤ α

}
.

Incremental model space

We now assume that the model space can depend on the

number of data points n. Let Xn such a (non-random) pa-

rameter space. For simplicity assume ∅ 6= X1 ⊆ X2 ⊆ · · ·
and let X =

⋃∞
n=1 Xn.

Define

φ̂n = inf
x∈Xn

1
n

n∑
i=1

l (x, Zi) , and φ∗
n = inf

x∈Xn

E [l (x, Z)] .

There are now 2 quantities of interest: ψ∗ and φ∗
n.

Main incremental result

If

1. l is bounded
2. Fn F for some bounded and Borel measurable F

then

τn

(
φ̂n − ψ∗

)
 lim

ε↘0
inf
x∈Sε

F (x) ,

τn

(
φ̂n − φ∗

n

)
 lim

ε↘0
inf
x∈Sε

F (x) ,

and

φ̂n = lim
ε↘0

inf
x∈Sε

{
f̂n (x) − f (x) + ψ∗

}
+ oP∗

(
τ−1
n

)
,

φ̂n = lim
ε↘0

inf
x∈Sε

{
f̂n (x) − f (x) + φ∗

n

}
+ oP∗

(
τ−1
n

)
.

Further,

τn(φ∗
n − ψ∗) → 0

Difficulties in approximating weak limits

In order for these results to be of any use, we need a way

to approximate F . With this we can generate confidences

intervals for ψ∗. There are some difficulties

1. Direct approximation of the limiting process using

sample means and variances does not yield correct

results (cf. [5, p. 19]).

2. Only under very restrictive conditions does the

bootstrap work [2, Thm. 3.1] (for example when Sε is
constant for ε small enough).

We then need new procedures.

Procedure to approximate weak limits

Rather than bootstrapping the data, then performing the

minimization, we instead bootstrap some other function of

the data. We consider 2 such functions

1. From [2] and [4],

ι̂sn,n(η) = s−1
n

(
inf
X

(f̂n + snη) − ψ̂n

)
.

2. Modified from [3],

ι̃sn,n(η) = inf
x∈Ssn

n

(η).

where

Sεn =

{
x ∈ X : 1

n

n∑
i=1

l (x, Zi) ≤ ψ̂n + ε

}
.

Consider a bootstrapping procedure which draws weights

Wi corresponding the number of times point Zi was re-

sampled. Let

fbn (x) =

(
n∑
i=1

Wi

)−1 n∑
i=1

Wil (x, Zi)

be the bootstrapped empirical risk and let

f̂n(x) = 1
n

n∑
i=1

l (x, Zi)

be the standard empirical risk.

Then provided H is Donsker, sn → 0 with snτn → ∞
and under mild conditions on the boostrapping procedure,

quantiles of

ι̂sn,n(τn(f bn − f̂n)) ι̃tn,n(τn(f bn − f̂n))
are guaranteed to tend to the quantiles of F asymptoti-

cally.
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