
(1) Introduction + Research Questions
✓ Multimodal machine learning has seen significant 

empirical success (e.g., GPT-4).

•Zhou Lu (ALT '24) demonstrated a computational 
separation between multimodal and unimodal learning 
for worst-case instances of a certain learning task.


•A learning task where multimodal data unlocks 
otherwise NP-hard learning problems.


✓ First, this paper presents a stronger average-case 
computational separation, where, for “typical 
instances” of a specific problem:

•Unimodal learning is computationally hard.

•Multimodal learning is computationally easy.


Hardness holds assuming (worst-case) hardness of 
Learning Parity with Noise (LPN).


✓ Second, this paper questions the “naturalness” of the 
average-case learning problem that makes this 
separation. Would it actually be relevant in practice?


Our key finding/theorem  

• Any computational separation between average-case 

unimodal and multimodal learning implies a 
corresponding cryptographic key agreement protocol.

Interpretation of the theorem  


• Strong computational advantages of multimodal data 
may occur infrequently in practice.

• Why? Such advantages exist only for “pathological” 

cases of inherently cryptographic distributions.

Justification of interpretation 


• A rhetorical question: do you believe that image and 
text data pairs could be used to encode a cryptographic 
KA protocol?


• If not, then you buy the interpretation—think about it!


(2) Executive Summary
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• Multimodal data: when many kinds of information are 
packaged in a single datapoint.

• For instance, text and image pairs.


• Multimodal machine learning has seen significant 
empirical success (e.g., GPT-4).


• Finding out when and why this success is happening 
is important.


(1) Can multimodal data allowing for 
computationally faster learning? More data 
efficient learning?


(2) What kinds of learning problems are multimodal 
data useful for?


(3) Are these learning problems relevant to practice, 
or very contrived?


★ If we find out the conditions for success, we can 
more efficiently allocate our resources to take 
advantage of the benefits of multimodal data in ML.
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This paper: investigating (2) and (3) w.r.t. the 
computational setting, from a theoretical 
perspective. 

Is theory (mathematical formalism) the right 
perspective for these questions?

Yes—towards    , we need abstraction. Then, we can use 
our theory to make predictions about when multimodal 
data is helpful in ML in practice. This is important in 
situations where trial and error in performing ML is too 
expensive.


• “Would harvesting multimodal data solve my compute 
bottleneck?” 


• We should know without needing to harvest data and 
then check! This could be wasteful if wrong.

✴  Lu (ALT ’24) worst-case model of bimodal and unimodal 
learning.


•  Two “modalities”: ; label space .

• In the bimodal PAC-learning task, selection of a dataset 

consisting of datapoints abides by a data distribution 
. The goal of a PAC-learning algorithm A is to 

process this dataset to generate a hypothesis function 
 that achieves population risk below on the 

unimodal task of labelling elements of  (w.l.o.g. ).

•  w.p. 


✴ Average-case bimodal learning (this work).

• Let  denote the convex polytope over all 

distributions over a set . We assume that the bimodal 
learning task is sampled according to a meta-
distribution  over . This is a “Bayesian 
view” of the PAC-learning task, where the learner is 
assumed to have some prior over the possible data 
distributions.


✴ Outline of implied cryptographic key agreement.

• Proof sketch: the protocol generates a hard unimodal 

learning instance by sampling an easy multimodal 
instance. Security implied because only hard unimodal 
data exposed to adversary.
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(3) Technical Appetizer

Again, for typical instances, not worst-case! This 
can inform practice better than worst-case 
separations.

Multimodal data might not help computationally in practice!
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