

ReconBoost: Boosting Can Achieve Modality Reconcilement

Cong Hua, Qianqian Xu*, Shilong Bao,

Zhiyong Yang, Qingming Huang*

Cong Hua

2024.07

Background

Real-world data usually follows a multi-modal nature

Multi-modal joint learning

- The prevailing paradigm in multi-modal learning typically employs a joint learning strategy.
- Various MML studies focus on integrating modality-specific features into a shared representation for downstream tasks.

Background

Modality Competition

The gradient update rule of k-th modality learner

$$\begin{array}{l} \theta_{k}^{t+1} = \theta_{k}^{t} - \eta \cdot \nabla_{\theta_{k}^{t}} \mathcal{L}(\Phi_{M}^{t}(x), y) \\ = \theta_{k}^{t} - \eta \cdot \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\partial W_{k} \cdot \mathcal{F}_{k}(\theta_{k}^{t}; m_{i}^{k})}{\partial \theta_{k}^{t}} \right)^{\top} \cdot \underbrace{\frac{\partial \ell \left(\Phi_{M}^{t}(x_{i}), y_{i} \right)}{\partial \Phi_{M}^{t}(x_{i})}}_{\text{shared}} \\ \\ \end{array} \\ \begin{array}{l} \text{dominant} \\ \text{modality} \\ \text{weak} \\ \text{modality} \end{array} \quad \begin{array}{l} \text{If} \quad \frac{\partial \ell \left(\phi_{k}^{t}(x_{i}), y_{i} \right)}{\partial \phi_{k}^{t}(x_{i})} \quad \text{approximates} \quad \frac{\partial \ell \left(\Phi_{M}^{t}(x_{i}), y_{i} \right)}{\partial \Phi_{M}^{t}(x_{i})} \quad , \\ \text{this modality will converge fast and overpower the learning process.} \\ \\ \text{If} \quad \frac{\partial \ell \left(\phi_{k}^{t}(x_{i}), y_{i} \right)}{\partial \phi_{k}^{t}(x_{i})} \quad \text{does not approximate} \quad \frac{\partial \ell \left(\Phi_{M}^{t}(x_{i}), y_{i} \right)}{\partial \Phi_{M}^{t}(x_{i})} \quad , \\ \\ \text{this modality will be stuck at bad local optimums.} \end{array}$$

Background

Modality Competition – Empirical Observation

• The gradient of audio $\frac{\partial \ell(\phi_k^t(x_i), y_i)}{\partial \phi_k^t(x_i)}$ approximates $\frac{\partial \ell(\Phi_M^t(x_i), y_i)}{\partial \Phi_M^t(x_i)}$

Audio modality will converge fast and overpower the learning process.

• The gradient of visual $\frac{\partial \ell(\phi_k^t(x_i), y_i)}{\partial \phi_k^t(x_i)}$ does not approximate $\frac{\partial \ell(\Phi_M^t(x_i), y_i)}{\partial \Phi_M^t(x_i)}$

Visual modality will be stuck at bad local optimums.

Performance on Audio-Visual dataset

Related works

Balanced multi-modal learning

 The primary concern is how to balance optimization progress across multi-modal learners.

• Given the nature of **joint optimization**, only limited improvements can be achieved.

(b) Visual Modality

(c) Multi-modal

Related works

Balanced multi-modal learning

 The primary concern is how to balance optimization progress across multi-modal learners.

• Given the nature of **joint optimization**, only limited improvements can be achieved.

□ Naive version of modality-alternating learning

Step 1: Each time, we pick a specific modality learner ϕ_k to **update**, and keep other fixed.

$$egin{aligned} artheta_k^{t+1} &= artheta_k^t - \eta \cdot
abla_{artheta_k^t} \mathcal{L}ig(\phi_k^t(m^k),yig) \ \mathcal{L}ig(\phi_k^t(m^k),y) &= rac{1}{N} \sum_{i=1}^N \ellig(\phi_k(artheta_k^t;m_i^k),y_iig) \end{aligned}$$

Step 2: Multi-modal scores are merged to obtain the final score.

$$\Phi_{\scriptscriptstyle M}(x_i) = \sum_{k=1}^{\scriptscriptstyle M} \phi_k\left(artheta_k; m_i^{\,k}
ight)$$

- The gradient across different modalities are naturally disentangled from each other, alleviating the modality competition issue.
- This approach ensures the exploitation of uni-modal features, but **neglects** the investigation of cross-modal interaction.

□ Naive version of modality-alternating learning

Step 1: Each time, we pick a specific modality learner ϕ_k to **update**, and keep other fixed.

$$artheta_k^{t+1} \!=\! artheta_k^t \!-\! \eta \cdot
abla_{artheta_k^t} \mathcal{L}(\phi_k^t(m^k), y)$$

$$\mathcal{L}(\phi_k^t(m^k),y) = rac{1}{N}\sum_{i=1}^N\ell\left(\phi_k(artheta_k^t;m_i^k),oldsymbol{y}_i
ight)$$

Step 2: Multi-modal scores are merged to obtain the final score.

$$\Phi_{\scriptscriptstyle M}\left(x_{\scriptscriptstyle i}
ight) = \sum_{\scriptscriptstyle k=1}^{\scriptscriptstyle M} \phi_{\scriptscriptstyle k}\left(artheta_{\scriptscriptstyle k};m_{\scriptscriptstyle i}^{\:k}
ight)$$

The gradient across different modalities are naturally disentangled
 fr How to design a more effective modality supervised signal?

neglect the investigation of cross-modal diversity.

□ Modality-alternating Update with Dynamic Reconcilment

Step 1: Each time, we pick a specific modality learner ϕ_k to **update**, and keep other fixed.

$$artheta_k^{t+1} = artheta_k^t - \eta \cdot
abla_{artheta_k^t} ilde{\mathcal{L}}_sig(\phi_k^t(m^k), yig) \ ilde{\mathcal{L}}_sig(\phi_k(m^k), yig) = rac{1}{N} \sum_{i=1}^N \Biggl[\underbrace{\ell(\phi_k(artheta_k; m^k_i), y_i)}_{ ext{agreement term}} - \lambda \cdot \underbrace{\mathbb{D}_sig(\Phi_{M/k}(x_i), \phi_k(artheta_k; m^k_i)ig)}_{ ext{reconcilement regularization term}} \Biggr]$$

Dynamically maintain the trade-off between two items:

- The agreement term aligns the overall predictor with the ground truth.
- The reconcilement regularization term investigates the cross-modal diversity.

Step 2: Multi-modal scores are **merged** to produce the final score.

$$\Phi_{\scriptscriptstyle M}(x_i) = \sum_{k=1}^M \phi_k\left(artheta_k; m_i^{\,k}
ight)$$

□ Connection to the Boosting Strategy

The overall optimization property of ReconBoost is unclear

$$ilde{\mathcal{L}}_s(\phi_k(m^k),y) = rac{1}{N} \sum_{i=1}^N \Biggl[\underbrace{\ell(\phi_k(artheta_k;m^k_i),y_i)}_{ ext{agreement term}} - \lambda \cdot \underbrace{\mathbb{D}_s(\Phi_{M/k}(x_i),\phi_k(artheta_k;m^k_i))}_{ ext{reconcilement regularization term}} \Biggr]$$

Theorem 1. Connection to the Gradient Boosting (GB) method

Let the reconcilement regularization be a KL divergence function:

$$\mathbb{D}_sig(\Phi_{\scriptscriptstyle M/k}(x_i),\phi_k(artheta_k;m_i^{\,k})ig)=\mathbb{D}_{\scriptscriptstyle KL,s}ig(\Phi_{\scriptscriptstyle M/k}(x_i)|\phi_k(artheta_k;m_i^{\,k})ig)$$

Then,

$$abla_{artheta_k} ilde{\mathcal{L}}_s(\phi_k(m^k),y) \Longleftrightarrow oldsymbol{
abla}_{artheta_k}\mathcal{L}ig(\phi_k(m^k),-
abla_{\Phi_{M/k}}\ell(\Phi_{M/k}(x),y)ig)$$

- Optimizing the dynamic loss functions $\tilde{\mathcal{L}}$ in ReconBoost **consistently** optimizes the original loss \mathcal{L} with a progressively changing pseudo-label in GB algorithm (Friedman, 2001).
- The updated modality learner can focus on the errors made by others.
- ReonBoost only preserves the last learner of each modality, formulating alternating-boosting strategy.

□ Pipeline of ReconBoost

- ReconBoost can realize an alternating version of the well-known gradient boosting algorithm.
- ReconBoost purses a reconciliation between the exploitation of uni-modal features and the exploration of cross-modal diversity.

Quantitative Comparisons

Method	AVE	CREMA-D	MN40	MOSEI	MOSI	CH-SIMS	
AudioNet	59.37	56.67		52.29	54.81	58.20	
VisualNet	30.46	50.14	80.51	50.35	57.87	63.02	
TextNet	-	-	-	66.41	75.94	70.45	
Concat Fusion	62.68	59.50	83.18	66.71	76.23	71.55	
G-Blending	62.75	63.81	84.56	66.93	76.45	71.55	
OGM-GE	62.93	65.59	85.61	66.67	76.01	71.10	
PMR	64.20	66.10	86.20	66.41	76.12	70.90	
UME	66.92	68.41	85.37	63.88	76.97	71.77	
UMT	67.71	70.97	90.07	67.04	75.80	71.55	
Ours	71.35	79.82	91.78	68.61	77.96	73.88	

□ Modality-specific Encoder Evaluation

Method	CREMAD Dataset				AVE Dataset			
	Audio	Visual	MIR	DMC	Audio	Visual	MIR	DMC
Uni-train	56.67	50.14	1.13	-	59.37	30.46	1.95	-
Concat Fusion	54.86	26.81	2.05	1.81	55.47	23.96	2.32	1.19
G-Blending	54.90	28.05	1.96	1.73	55.80	24.12	2.31	1.19
OGM-GE	55.42	29.17	1.90	1.68	56.51	25.52	2.21	1.14
PMR	55.60	29.21	1.90	1.68	57.20	26.30	2.17	1.12
UMT	58.47	45.69	1.28	1.13	60.70	31.07	1.95	1.00
Ours	60.23	73.01	0.82	0.73	61.20	39.06	1.57	0.80

Conclusion

- Methodologically: propose a novel multi-modal alternating learning paradigm to address notorious modality competition issue.
- Theoretically: show that by choosing a KL-divergencebased reconcilement term, our proposed method can realize an alternating version of the well-known gradient boosting method.
- Empirically: Comprehensive experiments justify the effectiveness of our proposed framework on various multi-modal scenarios.

Thanks for your listening!

code