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Background

 Real-world data usually follows a multi-modal nature 

Visual Audio

Medical Diagnosis Cross-modal Retrieval
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Background

Multi-modal joint learning

• The prevailing paradigm in multi-modal learning typically 

employs a joint learning strategy.

• Various MML studies focus on integrating modality-specific 

features into a shared representation for downstream tasks.
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Background

Modality Competition

The gradient update rule of k-th modality learner

this modality will converge fast and overpower the learning process. 

If approximates

this modality will be stuck at bad local optimums.

If does not approximate
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Background

Modality Competition – Empirical Observation 

Audio modality will converge fast and overpower the learning process. 

approximates

Visual modality will be stuck at bad local optimums.

does not approximate

⚫ The gradient of audio

stuck

stuck
converge fast

converge fast

Performance on Audio-Visual dataset 

⚫ The gradient of visual
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Related works

 Balanced multi-modal learning

• The primary concern is how to balance optimization progress 

across multi-modal learners.

• Given the nature of joint optimization, only limited 

improvements can be achieved. 

(a) Audio Modality (b) Visual Modality (c) Multi-modal
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Related works

 Balanced multi-modal learning

• The primary concern is how to balance optimization progress 

across multi-modal learners.

• Given the nature of joint optimization, only limited 

improvements can be achieved. 

(a) Audio Modality (b) Visual Modality (c) Multi-modal

Can we achieve modality reconciliation via 

other learning paradigm?
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Main part

 Naive version of modality-alternating learning

Step 1: Each time, we pick a specific modality learner      to update, and keep 

other fixed.

Step 2: Multi-modal scores are merged to obtain the final score.

• The gradient across different modalities are naturally disentangled 

from each other, alleviating the modality competition issue.

• This approach ensures the exploitation of uni-modal features, but 

neglects the investigation of cross-modal interaction.
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Main part

 Naive version of modality-alternating learning

Step 1: Each time, we pick a specific modality learner      to update, and keep 

other fixed.

Step 2: Multi-modal scores are merged to obtain the final score.

• The gradient across different modalities are naturally disentangled 

from each other, alleviating the modality competition issue.

• This approach ensures the exploitation of uni-modal features, it 

neglect the investigation of cross-modal diversity.

How to design a more effective modality supervised signal?
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Main part

 Modality-alternating Update with Dynamic Reconcilment

Step 1: Each time, we pick a specific modality learner      to update, and 

keep other fixed.

Step 2: Multi-modal scores are merged to produce the final score.

Dynamically maintain the trade-off between two items:

• The agreement term aligns the overall predictor with the ground truth.

• The reconcilement regularization term investigates the cross-modal diversity.
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Main part

 Connection to the Boosting Strategy
The overall optimization property of ReconBoost is unclear

Theorem 1. Connection to the Gradient Boosting (GB) method

Let the reconcilement regularization be a KL divergence function:

Then,

• Optimizing the dynamic loss functions     in ReconBoost consistently 

optimizes the original loss     with a progressively changing pseudo-label in 

GB algorithm (Friedman, 2001).

• The updated modality learner can focus on the errors made by others.

• ReonBoost only preserves the last learner of each modality, formulating 

alternating-boosting strategy.
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Main part

 Pipeline of ReconBoost

• ReconBoost can realize an alternating version of the well-known gradient 

boosting algorithm.

• ReconBoost purses a reconciliation between the exploitation of uni-modal 

features and the exploration of cross-modal diversity.
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Experiments

 Quantitative Comparisons



14

Experiments

 Modality-specific Encoder Evaluation
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Conclusion

 Methodologically: propose a novel multi-modal 

alternating learning paradigm to address notorious 

modality competition issue.

 Theoretically: show that by choosing a KL-divergence-

based reconcilement term, our proposed method can 

realize an alternating version of the well-known gradient 

boosting method.

 Empirically: Comprehensive experiments justify the 

effectiveness of our proposed framework on various 

multi-modal scenarios.
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Thanks for your listening!

code


