Albert Tseng”

albert@cs.cornell.edu

Jerry Chee”

jerrychee@cs.cornell.edu

Even Better LLM Quantization with Hadamard
Incoherence and Lattice Codebooks

Qingyao Sun
qgs234@cornell.edu

Volodymyr Kuleshov

kuleshov@cornell.edu

QulP# achieves state-of-the-art 2 bit weight-only LLM quantization through better incoherence processing with the random
Hadamard transform, E8 lattice-based fast vector quantization, and fine-tuning. QulP# is over 3X faster than FP16.

Incoherence Processing with the Random Hadamard Transform Fast Vector Quantization with E8-Based Codebooks Fine-Tuning (FT)

Christopher De Sa

cdesa@cs.cornell.edu

LLM weights have “outliers,” making them hard to quantize. We can solve this by @ The RHT makes W’s entries approximately i.i.d Gaussian. QulP# uses this shaping QulP# uses a novel fine-tuning algorithm to efficiently capture PPL | 2-7B
multiplying each weight matrix W € R™" with random orthogonal matrices. This by wvector quanting weights. Vector Quantization (VQ) quantizes d numbers inter-layer interactions. First, QulP# tunes layers before Method | Wiki2 C4
concentrates their entries, making them incoherent (small p). together to a codebook. This codebook can be shaped to the source distribution, quantization to correct for quantization error from prior b16 E19 663
M S o Standard Gatcsian 14— 408 1M Saroie. £ . reducing distortion. layers. Then, It tunes unquantized parameters end-to-end. _ ' '
G R EE e e EXPONENTAIA= & K=, QulP# needs <1000 samples and 100 GPU hours for a 70B 2BitnoFT | 822 11.0
1,00 - 3 o 2-7B 10_q NPP before RHT, j1 = 18.44 270 10.q NP afer RHT H= 028 Mncmts 2 model and can halve quantization error. 2BitFT | 6.19 8.16
.. 0.75 - § § 0.1 - N ,‘ | : \
po= Hiax ‘WZ]‘ W 0.50 - 2_ % 0.0 1—% 0.0 . : r g ¢ . . -
i [IWllr - - : ; - A O QulP# is SOTA in Quality and Inference Speed
o S —01 e o _ o o ¢ o .

& L 4

o ® ®© ® ® ¢ o @
— T T T T T T T T T T ¢ & L 2
-4 =2 0 2 4 -4 =2 0 2 4

Theoretical quantiles

0.00

I I O = I I
-4 —2 0 2 4 0.0 2.5 5.0 7.5

|
&
Ul

10.0 12.5

QulP# is the first PTQ method where 3 bits scales better than 4 bits. QulP# is over 3X
faster than FP16 inference and 5X faster than AQLM#?’s direct-VQ approach.

Increasing the VQ dimension reduces error. However, direct k-bit d-dim VQ needs 4
O(2"9d) space and time, making high-dimensional VQ intractable. Furthermore,
for fast inference, the codebook must fit in GPU L1 cache (<100KB), limiting d (<4).

1D vs 2D VQ figure from GPTVQ: https://arxiv.org/abs/2402.15319
Theoretical quantiles

QulIP# introduces the random Hadamard transform (RHT) for incoherence
processing. The RHT performs X «— VSX, where V is a Hadamard matrix and S is
a random sign vector. Hadamard matrices are recursively defined, so the RHT can
be performed in O(n log n) time with minimal storage overhead.

Prompt:) How much wood could a woodchuck chuck if a woodchuck could chuck wood?

2 Bit QuiP# Llama 2 70B Chat: The answer to this tongue-twister is a bit of a mystery.
Woodchucks, also known as groundhogs, are rodents that burrow in the ground and are known for

r A their ability to move large amounts of soil. However, there is no scientific evidence to suggest ... y
Randomize Signs Hor Hos Codebook FP16 ESP (8D, QuilP#) 4D VQ (D4 Lattice) 2 Bit Int (1D, QuIP) - ‘
X < . (X o S (1)) Wiki2 PPL (no FT) | 3.12 4.16 4.41 5.90 \ \ PPL | 2-78 c-13B 2-70B
H. -Hi 5, J Mthd. Bits| W2 C4 | W2 C4 W2 C4
) ’ QuIP# solves this with a novel 2 bit 8D codebook, E8P, based on the highly &g ‘ \ FP16 16 | 5.12 6.63| 4.57 6.05|3.12 4.97
on the matrix size, improving QUIP"s 1y = 21og (—4?71) Wi = \/ 2log (%) Eér;me”ylmagesdESPJgoox :ma"er than a naive SE COdiboog(};ﬁ vs IMiB). = QulP# 4 519 6.75 4.63 6.13 3.18 5.02
2 : can also be decoded in <4 Instructions per weight, makin u ast. = ,_
log” dependence and O(nyn) runtime. P Y J 35 e GPTQ® 3 8.06 10.6| 5.85 7.86 4.40 6.26
— u P |t N
.. : : To hit higher bitrates, QulP# uses residual vector quantization (RVQ). RVQ o | y QulP 3 - - | 9.12 6.793.87 5.67
- _ ’ , _ _]] ® QulP# 3 Bit
Vector-Quantizing Incoherent Matrices with BlockLDLQ repeatedly quantizes the quantization residual, exponentially decreasing % OulP# 4 Bi AQLM 3 |5.46 7.10| 4.83 6.37|3.36 5.17
| o | | | - BlockLDLQ’s error. Since E8P is uniform, the residuals are also ball-shaped, < 4 | QulP# 3 | 541 7.14| 4.78 6.35 3.35 5.15
Like existing works, we quantize linear layers independently by minimizing a |etting us recursively use ES8P in RVQ. = 4 AQLM ~2Bit
“proxy error” that represents the expected output activation error. % Theoretical Lossless (FP16) 4 Bit Qulp 2 - - 113.5 16.2/5.90 8.71
A A ¢ QuIP 2 Bit AQLM 2 |6.93 8.84| 570 7.59|3.94 5.72
Sy tr (W = W)aal (W =W))) - H =Byop [aa”] X || Quantize X to .| Quantize Rto| | 4 Bit Output ¥ = ’ SE+10 1EH1" QuiP# 2 6.19 8.16 535 7.20 3.91 5.71
ESP (2 Bits) |R = a(X - Q(X, E8P)) ESP (2 Bits) Q(X, E8P) + Q(R, E8P)/a Model Size (Bits)
To minimize this, QulP# introduces the BlockLDLQ algorithm, a direct extension of 0-shot bs=1 Speed tok/s (HF, 4090)
A : : 2-7B 2-13B 2-70B ’
LDLQ to vector quantization. BlockLDLQ iteratively rounds g columns together Acc. 1
ith linear feedback A from alread ded col ini i ati 2 Method |~ 2-7B | 2-705
with linear feedback A from already-rounded columns. Why Post Training Quantization (PTQ)" Mthd. Bits ArcC PIQA Wino ArcC PiQA Wino ArcC PiQA Wino rpyg 331 | OOM
3 . . FP16 16 [40.0 785 67.3 456 73.5 69.6 51.1 81.1 77.0 -
Wip=0@Q (Wk+ (W1 — Wzk—1>Ak) LLMs have billions of parameters that can take up over a terabyte of memory. AQLM 2 Bit | 20.6 | 8.27
N Unfortunately, small batch autoregressive inference is memory bound, meaning ~ QlP 4 - - - 1449 79.0 69.7 470 803 76.0 QuP#2Bit 106.3 | 25.9
It we set A to the g-block LDL decomposition of H, we can bound the error of that we can only generate tokens as fast we can read in weights. QulP# 4 |40.5 78.4 67.6 455 78.9 69.9 50.6 81.4 77.1
BlockLDLQ. Note that this bound depends on the incoherence p — reducing p QuiP# bs=1 Speed
(such as with the RHT) directly improves the quantization error PTQ | f b H ler d d th QuiP-—3 1 -) - |41 769 696463 800 /4.6 7oMemBW (FA, 4090)
- can accelerate inference uantizing weights to smaller data types an us
. . . Yy 9 J J . yP i QuiP# 3 39.2 77.3 66.5 44.0 784 69.1 50.9 814 76.4 ModelSize| 2 Bits 4 Bits
202 compressing models. This directly reduces memory footprint and increases
D tr ((W — W)H(W — VV)T> < ITH T ¢ (HY2) theoretical inference speed. Quantized LLMs also require less hardware to run QuiP 2 1194 546 51.823.5 62.0 52.8 34.0 74.8 67.5 /B 29.6% | 40.9%
" and are more information-efficient than native LLMs. QulP# 2 [34.6 75.1 64.9 39.5 77.3 67.7 | 48.7 80.3 75.9 70B 56.8% | OOM

ulP: 2-Bit Quantization of Large Language Models With Guarantees. J. Chee, Y. Cai, V. Kuleshov, C. De Sa. NeurlPS 2023.
treme Compression of Large Language Models via Additive Quantization. V. Egiazarian, A. Panferov, D. Kuznedelev, E. Frantar, A. Babenko, D. Alistarh. ICML 2024.
PTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. E. Frantar, S. Ashkboos, T. Hoefler, D. Alistarh. ICLR 2023.

HF = HuggingFace and FA = FlashAttention inference engines.

