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QulP# achieves state-of-the-art 2 bit weight-only LLM quantization through better incoherence processing with the random
Hadamard transform, E8 lattice-based fast vector quantization, and fine-tuning. QulP# is over 3X faster than FP16.
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QulP# is the first PTQ method where 3 bits scales better than 4 bits. QulP# is over 3X
faster than FP16 inference and 5X faster than AQLM#?’s direct-VQ approach.

Increasing the VQ dimension reduces error. However, direct k-bit d-dim VQ needs 4
O(2"9d) space and time, making high-dimensional VQ intractable. Furthermore,
for fast inference, the codebook must fit in GPU L1 cache (<100KB), limiting d (<4).

1D vs 2D VQ figure from GPTVQ: https://arxiv.org/abs/2402.15319
Theoretical quantiles

QulIP# introduces the random Hadamard transform (RHT) for incoherence
processing. The RHT performs X «— VSX, where V is a Hadamard matrix and S is
a random sign vector. Hadamard matrices are recursively defined, so the RHT can
be performed in O(n log n) time with minimal storage overhead.

Prompt:) How much wood could a woodchuck chuck if a woodchuck could chuck wood?

2 Bit QuiP# Llama 2 70B Chat: The answer to this tongue-twister is a bit of a mystery.
Woodchucks, also known as groundhogs, are rodents that burrow in the ground and are known for

r A their ability to move large amounts of soil. However, there is no scientific evidence to suggest ... y
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HF = HuggingFace and FA = FlashAttention inference engines.



