
LLM weights have “outliers,” making them hard to quantize. We can solve this by
multiplying each weight matrix W ∈ ℝmxn with random orthogonal matrices. This
concentrates their entries, making them incoherent (small μ).

QuIP# introduces the random Hadamard transform (RHT) for incoherence
processing. The RHT performs X ← VSX, where V is a Hadamard matrix and S is
a random sign vector. Hadamard matrices are recursively defined, so the RHT can
be performed in O(n log n) time with minimal storage overhead.

QuIP# achieves state-of-the-art 2 bit weight-only LLM quantization through better incoherence processing with the random
Hadamard transform, E8 lattice-based fast vector quantization, and fine-tuning. QuIP# is over 3X faster than FP16.

Incoherence Processing with the Random Hadamard Transform Fast Vector Quantization with E8-Based Codebooks Fine-Tuning (FT)

QuIP# Even Better LLM Quantization with Hadamard
Incoherence and Lattice Codebooks

Albert Tseng*
albert@cs.cornell.edu

Jerry Chee*
jerrychee@cs.cornell.edu

Qingyao Sun
qs234@cornell.edu

Volodymyr Kuleshov
kuleshov@cornell.edu

Christopher De Sa
cdesa@cs.cornell.edu

The RHT makes W’s entries approximately i.i.d Gaussian. QuIP# uses this shaping
by vector quanting weights. Vector Quantization (VQ) quantizes d numbers
together to a codebook. This codebook can be shaped to the source distribution,
reducing distortion.

Increasing the VQ dimension reduces error. However, direct k-bit d-dim VQ needs
O(2kdd) space and time, making high-dimensional VQ intractable. Furthermore,
for fast inference, the codebook must fit in GPU L1 cache (<100KB), limiting d (<4).

QuIP# solves this with a novel 2 bit 8D codebook, E8P, based on the highly
symmetric E8 lattice. E8 achieves the optimal 8D unit-ball packing, and E8’s
symmetry makes E8P 1000X smaller than a naive 8D codebook (1KiB vs 1MiB).
E8P can also be decoded in <4 instructions per weight, making QuIP# fast.

To hit higher bitrates, QuIP# uses residual vector quantization (RVQ). RVQ
repeatedly quantizes the quantization residual, exponentially decreasing
BlockLDLQ’s error. Since E8P is uniform, the residuals are also ball-shaped,
letting us recursively use E8P in RVQ.

QuIP# uses a novel fine-tuning algorithm to efficiently capture
inter-layer interactions. First, QuIP# tunes layers before
quantization to correct for quantization error from prior
layers. Then, it tunes unquantized parameters end-to-end.
QuIP# needs <1000 samples and 100 GPU hours for a 70B
model and can halve quantization error.

Vector-Quantizing Incoherent Matrices with BlockLDLQ

X X S (±1) ⊙

Hn-1 Hn-1

Hn-1 -Hn-1

()

Like existing works, we quantize linear layers independently by minimizing a
“proxy error” that represents the expected output activation error.

To minimize this, QuIP# introduces the BlockLDLQ algorithm, a direct extension of
LDLQ to vector quantization. BlockLDLQ iteratively rounds g columns together
with linear feedback A from already-rounded columns.

If we set A to the g-block LDL decomposition of H, we can bound the error of
BlockLDLQ. Note that this bound depends on the incoherence μ – reducing μ
(such as with the RHT) directly improves the quantization error.

QuIP# is SOTA in Quality and Inference Speed

Codebook FP16 E8P (8D, QuIP#) 4D VQ (D4 Lattice) 2 Bit Int (1D, QuIP)

Wiki2 PPL (no FT) ↓ 3.12 4.16 4.41 5.90

QuIP# is the first PTQ method where 3 bits scales better than 4 bits. QuIP# is over 3X
faster than FP16 inference and 5X faster than AQLM2’s direct-VQ approach.

Randomize Signs

The RHT gives a log dependence for μ
on the matrix size, improving QuIP1’s
log2 dependence and O(n√n) runtime.

PPL ↓ 2-7B 2-13B 2-70B

Mthd. Bits W2 C4 W2 C4 W2 C4

FP16 16 5.12 6.63 4.57 6.05 3.12 4.97

QuIP 4 - - 4.76 6.29 3.58 5.38

QuIP# 4 5.19 6.75 4.63 6.13 3.18 5.02

GPTQ3 3 8.06 10.6 5.85 7.86 4.40 6.26

QuIP 3 - - 5.12 6.79 3.87 5.67

AQLM 3 5.46 7.10 4.83 6.37 3.36 5.17

QuIP# 3 5.41 7.14 4.78 6.35 3.35 5.15

QuIP 2 - - 13.5 16.2 5.90 8.71

AQLM 2 6.93 8.84 5.70 7.59 3.94 5.72

QuIP# 2 6.19 8.16 5.35 7.20 3.91 5.71

PPL ↓ 2-7B

Method Wiki2 C4

FP16 5.12 6.63

2 Bit no FT 8.22 11.0

2 Bit FT 6.19 8.16

0-shot
Acc. ↑ 2-7B 2-13B 2-70B

Mthd. Bits ArcC PiQA Wino ArcC PiQA Wino ArcC PiQA Wino

FP16 16 40.0 78.5 67.3 45.6 73.5 69.6 51.1 81.1 77.0

QuIP 4 - - - 44.9 79.0 69.7 47.0 80.3 76.0

QuIP# 4 40.5 78.4 67.6 45.5 78.9 69.9 50.6 81.4 77.1

QuIP 3 - - - 41.5 76.9 69.6 46.3 80.0 74.6

QuIP# 3 39.2 77.3 66.5 44.0 78.4 69.1 50.9 81.4 76.4

QuIP 2 19.4 54.6 51.8 23.5 62.0 52.8 34.0 74.8 67.5

QuIP# 2 34.6 75.1 64.9 39.5 77.3 67.7 48.7 80.3 75.9

bs=1 Speed tok/s (HF, 4090)

Method 2-7B 2-70B

FP16 33.1 OOM

AQLM 2 Bit 20.6 8.27

QuIP# 2 Bit 106.3 25.9

QuIP# bs=1 Speed
%MemBW (FA, 4090)

Model Size 2 Bits 4 Bits

7B 29.6% 40.9%

70B 56.8% OOM

Why Post Training Quantization (PTQ)?

LLMs have billions of parameters that can take up over a terabyte of memory.
Unfortunately, small batch autoregressive inference is memory bound, meaning
that we can only generate tokens as fast we can read in weights.

PTQ can accelerate inference by quantizing weights to smaller data types and thus
compressing models. This directly reduces memory footprint and increases
theoretical inference speed. Quantized LLMs also require less hardware to run
and are more information-efficient than native LLMs.

1D vs 2D VQ figure from GPTVQ: https://arxiv.org/abs/2402.15319

X Quantize X to
E8P (2 Bits)

Quantize R to
E8P (2 Bits)R = α(X - Q(X, E8P))

4 Bit Output Y =
Q(X, E8P) + Q(R, E8P)/α

How much wood could a woodchuck chuck if a woodchuck could chuck wood?

2 Bit QuIP# Llama 2 70B Chat: The answer to this tongue-twister is a bit of a mystery.
Woodchucks, also known as groundhogs, are rodents that burrow in the ground and are known for
their ability to move large amounts of soil. However, there is no scientific evidence to suggest …

 Prompt:

HF = HuggingFace and FA = FlashAttention inference engines.1. QuIP: 2-Bit Quantization of Large Language Models With Guarantees. J. Chee, Y. Cai, V. Kuleshov, C. De Sa. NeurIPS 2023.
2. Extreme Compression of Large Language Models via Additive Quantization. V. Egiazarian, A. Panferov, D. Kuznedelev, E. Frantar, A. Babenko, D. Alistarh. ICML 2024.
3. GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. E. Frantar, S. Ashkboos, T. Hoefler, D. Alistarh. ICLR 2023.

