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Centralized Selection

Goal: Find an allocation that maximizes utility

Models: IIT JEE, China Gaokao, online labor markets, etc.

Algorithm: Can use Gale-Shapley algorithm to find utility 
maximizing and stable allocation (works even when 
institutions have different evaluations for candidates)

Each candidate has a preference 
list over 𝑝 institutions

>

However, observed evaluations may be biased affecting both utility and “fairness” …   



Systemic Biases: Certain groups may not be able to 
perform well in the evaluation processes due to unequal 
opportunities/information … Or evaluation process may 
inadvertently benefit one group of people over another

Implicit Biases: Unconscious attribution of qualities (or lack 
thereof) to members of particular group: based on e.g., 
gender, ethnicity, or race
• Women receive lower competence scores than men in peer-

reviews [Wennerås & Wold ’97]
• White names receive 50% more callbacks for interviews than 

African-American names [Bertrand & Mullainathan ’04]
 

Evaluations May Be Biased

[Source]: “Are Emily and Greg…?” 
Brooke C. Medium.com

The measured (estimated) utility may not be an accurate representation of the 
candidate’s true (latent) utility. This can adversely affect the opportunities of 
candidates from disadvantaged groups while also reducing total utility for institutions. 
Assume there is no a priori reason that the ability of individuals depends on their 
socio-economic attributes. We also assume preferences are identically distributed 

How do we ensure fairness and maximal utility in an assignment process with multiple institutions in 
this centralized setting?



Model 
• 𝑛 candidates apply to 𝑝 > 1 institutions, capacity 𝑘!, 𝑘", … , 𝑘#

• Candidate 𝑖 has latent utility 𝑢! ≥ 0 and preference list 𝜎! over 
institutions

• Candidates are in group 𝐺" (advantaged) or 𝐺# (disadvantaged)

• 𝑢$ drawn iid from distribution 𝒟; 𝜎$ drawn iid from distribution ℒ

𝜷-Bias Model in [Kleinberg & Raghavan ‘18]

• A simple multiplicative model closely models empirical data 
from human-subject studies (e.g. in nepotism and sexism) and for 
power law distributions [Wennerås & Wold ’97]

• Bias parameter 𝛽, 0 < 𝛽 ≤ 1, and the estimated utility 1𝑢$	for 
agents in group 𝐺"	is 𝛽 4 𝑢$ and for agents in 𝐺! is 𝑢$
• Assumes that 𝛽 is unknown, which aligns with the one-round 

setting of the centralized selection problems

• Easily generalized to multiple groups (more bias parameters)

• Assume 𝛽 ≤ 1 since an agent in 𝐺#	is systemically underestimated

How do we measure fairness and utility?

Example: 𝛽 = 0.5 
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8𝐺" 8	
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𝓐𝟏 𝓐𝟐

𝑘" = 𝑘# = 2
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1 2
Uniform preferences

x = no assignment



Fairness and Utility Metrics
• Each metric evaluates an algorithm 𝒜, results in a value in  

[0,1] (higher is better), and generalizes to more groups

• We utilize two fairness metrics, considering both overall and 
top-choice representation for candidates in different groups

1 - Utility Ratio: Measures the ratio of the expected latent utility of a 
matching (𝑀'(,*) on observed utility (7𝑢) divided by the maximum total 
utility (𝑈∗)

𝒰 𝒜 =	𝔼(~𝒟,*	~ℒ
𝑈(𝑀'(,*)
𝑈∗(𝑢)

2 - Representational Fairness: Compares the representation of groups in 
all institutions, where 𝜌0 is the fraction of candidates in 𝐺0 that get 
selected by 𝑀'(,*  [Barocas et al. ‘19]

ℛ 𝒜 =	𝔼(~𝒟,*	~ℒ
min{𝜌", 𝜌#}
max{𝜌", 𝜌#}

3 - Preference-based Fairness: Compares the representation of groups in 

top choice institutions by 𝑀'(,* , where 𝜋0
(ℓ)is the fraction of candidates in 

𝐺0 that get a top-ℓ choice (e.g. ℓ = 1) 

𝒫(ℓ) 𝒜 =	𝔼(~𝒟,*	~ℒ
min{𝜋"

(ℓ), 𝜋#
(ℓ)}

max{𝜋"
(ℓ), 𝜋#

(ℓ)}

Example: 𝛽 = 0.5 
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𝓐𝟏 𝓐𝟐

𝓡(𝓐𝟏) = 𝓡(𝓐𝟐) = 𝟏
𝓟(𝟏)(𝓐𝟏) = 𝟏
𝓟(𝟏)(𝓐𝟐) = 𝟎



Results 1: Traditional Methods Fail
Define 𝒜%& as the standard Gale-Shapley algorithm to construct a stable matching 
[Gale & Shapley ‘62]. Individuals are sorted by decreasing estimated utility, then 
they are assigned their top choice institution with available capacity

Theorem: Consider an instance where the utilities of the candidates are drawn from 
the uniform distribution on [0, 1] and the distribution over preferences is arbitrary. 

Assume 𝑛! = 𝑛". Then, 𝒫 𝒜%& ≤ 𝛽 ± 𝑂 # '() *
*

, ℛ 𝒜𝒔𝒕 = 𝛽 ± 𝑂 '() *
*

, and 

𝒰 𝒜𝒔𝒕 = "
-+

./
-(/1!)! ± 𝑂

'() *
*

Observation: As 𝛽 → 0, 𝒫 𝒜%& → 0, ℛ 𝒜%& → 0, 
and 𝒰 𝒜%& → "

-
. 𝓐𝐬𝐭 cannot guarantee optimal 

utility or fairness. Even beyond this setup, the results 
generalize to arbitrary 𝑛!, 𝑛" and instances where 
the utilities are drawn from any log-concave 
distribution over [0, 1]; the given bounds generally 
hold in such settings

How do we implement fairness constraints and improve optimality?

𝛽



Results 2: Institution-Wise Constraints Work

Define 𝒜$*%&56$%7 based on 𝒜%&. For each institution ℓ, we require it to have
 𝑘ℓ ⋅ |𝐺9	|/𝑛 candidates from each group 𝐺9	assigned to it. We create two 
instantiations of each institution with proportional capacities, then run 𝒜%& on the 
respective group

Theorem: Let	𝜂!, 𝜂", 𝜂- > 0 be parameters such that 𝐺9 ≥ 	𝜂!𝑛 for 𝑗 ∈ {1, 2}, 𝐾 =
∑$:!
# 𝑘$ ≥ 𝜂"𝑛, and 𝑘ℓ ≥ 𝜂-𝐾 for each ℓ ∈ [𝑝]. There is an algorithm 𝒜$*%&56$%7 

such that, for any distribution of utilities and preference lists, and bias parameter 𝛽, 

𝒫 𝒜$*%&56$%7 ≥ 1 − 𝑂 # '() ;
<#<$ ;

, ℛ 𝒜%& = 1, and 𝒰 𝒜%& ≥ 1 − 𝑂 =>? *
<!*

Observation: 𝒜$*%&56$%7 guarantees high preference-based and representational 
fairness while maintaining near-optimal utility. 𝛽 also does not need to be known. This 
algorithm is also group-wise stable, Pareto-efficient, and strategy-proof and results 
generalize beyond this setup

Define 𝒜?@>A# as 𝒜%& with proportional group-wise representational constraints 
[Celis et al. ‘20]. We implement this by running 𝒜%& on the top |𝐺9	|/𝑛 candidates in 
each group 𝐺9. Observe that 𝒜?@>A# can enforce representational fairness with 
near optimal utility but can have low preference-based fairness



Proof Ideas
Result 1: Bounding utility and fairness guarantees of 𝒜𝒔𝒕 
• A Lipschitz property of the assignment given by 𝒜%& allow us to derive tight 

concentration bounds on the number of selected candidates when preference lists 
are drawn from a distribution: changing the preference list of only one candidate 
changes the assignment slightly

• It suffices to bound the expected values of the proportion of selected people in each 
group that receive their top choices, bounding 𝒫 𝒜%&  and ℛ 𝒜%&  

• 𝒰 𝒜%& 	can be estimated by evaluating the expected utility of the top 𝑆9 
candidates from each group 𝐺9, where 𝑆9 is the expected number of selected 
candidates from 𝐺9

Result 2: Bounding 𝒜𝒊𝒏𝒔𝒕5𝒘𝒊𝒔𝒆 
• ℛ 𝒜$*%&56$%7 = 1 follows from the construction of the algorithm
• 𝒰 𝒜$*%&56$%7 ≈ 1 also follows because of the algorithm and iid assumptions
• Bounding 𝒫 𝒜$*%&56$%7  requires a non-trivial proof that bounds the gap 

between the fraction of candidates in the two groups who receive top choices
• This relies on another Lipschitz property of 𝒜%&: changing the capacity of an 

institution by one unit changes the allocation for at most 𝑝 candidates
• This allows us to show that 𝒫 𝒜$*%&56$%7  ≈ 1 



Empirical Results
• We show our algorithm’s efficacy in real-world evaluation processes using data 

from India’s centralized IIT-JEE 2009 examination
• Using gender and birth-category as two protected attributes and varying the unknown 

preference distributions, we find 𝒫(") 𝒜!45678!59 ≥ 0.90 while 𝒫(") 𝒜56 ≤ 0.25 
• We also use simulated data when groups have different preference distributions (e.g. 

HBCUs in the US)
• We test on utilities distributed under Gaussian and Pareto distributions
• We find that 𝒫(") 𝒜!45678!59 ≥ 0.75 while 𝒫(") 𝒜56 ≤ 0.30 

• We find that our algorithm maintains high fairness and near-optimal utility and is 
robust when assumptions are not followed while 𝒜%& and 𝒜?@>A# may fail to result 
in either high fairness or optimal utility

• We also test 𝒜%& beyond the theoretical setup and find the results generally hold

Figure: Preference-based fairness as 
measured by 𝒫(&)using either gender or 
birth-category as the protected attribute 
with data from the 2009 JEE test. The x-
axis denotes 𝜙, the dispersion parameter 
of the Mallows preference distribution. 
Error bars denote the standard error of 
the mean over 50 iterations. 



Conclusion, Limitations, and Future Work
• Biases in evaluation processes may lead to suboptimal results not only for 

candidates, but also for institutions
• We present a family of institution-wide constraints for the multiple institution 

centralized selection problem
• They provably achieve near-optimal utility and preference-based fairness with 

minimal error terms
• We empirically validate our model and present an algorithm,	𝒜$*%&56$%7, that 

can be used under real-world data, maintaining fairness and high utility in 
situations where 𝒜%& fails

• Extending work beyond the iid assumption for utilities is an interesting direction
• Future work could also extend beyond centralized selection to the setting where 

institutes have different evaluations
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