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I Learning in Games

B This paper proposes a payoff perturbation technique for the Mirror Descent
algorithms to find a Nash equilibrium (NE) in monotone games.
B N-Player Monotone Games

O A family of games including: Cournot competition [Bravo et al. 2018];
A-cocoercive games [Lin et al., 2020]; Concave-convex games and zero-sum
polymatrix games [Cai & Daskalakis, 2011; Cai et al., 2016]

B Various learning algorithms have been developed and scrutinized to compute NE
efficiently.

I Mirror Descent and Average-lterate Convergence

B Mirror Descent (MD) updates the strategy nit based on the gradient feedback
Wﬂ'ivi (T’:t)

it = arg max{n,(V,,v;(7"), x) —[Dl/, (x, nf)]}

XEX;

Does not move too
far away from the
current strategy

Choose strategies
with higher expected
payoffs

Next strategy

O n;: learning rate
u Dy (1;, ;): Bregman divergence with strongly convex function

B The average strategies = Z 1 rt converge to NE (average-iterate convergence).

However, the actual trajectory of =t may fail to converge [Mertikopoulos et al.,
2018].

I Last-lterate Convergence and Perturbation Approach

B Last-lterate Convergence
[ The updated strategy profile itself converges to NE

[ Optimistic learning algorithms are representative algorithms that achieve last-
iterate convergence [Daskalakis et al., 2018; Daskalakis & Panageas, 2019;
Mertikopoulos et al., 2019; Wei et al., 2021]. However, they perform
suboptimally with feedback contaminated by some noise.

B Payoff Perturbation Approach (e.g., [Facchinei & Pang, 2003])
[ Introducing strongly convex penalties to the players’ payoff functions

[ Only converges to an approximate NE
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B APMD perturbs the payoff function v; by the divergence function G (+,-)
between the current and anchoring strategies (i.e., nf and o;)

Strongly convex
dlvergence function

nttt = arg max{n,(V, v;(n") —@an(ﬂ .)J x) — Dy (x,7; )}

XEX;
Perturbatlon Anchoring
strength strategy

O The strong convexity of G enables the current strategy ! to converge to a
stationary point m#?, an approximate equilibrium

1 To ensure convergence to NE, the magnitude of perturbation requires
careful adjustment [Koshal et al., 2010; Tatarenko & Kamgarpour, 2019; Liu
et al., 2023]

B APMD adaptively determines the magnitude of perturbation, while

maintaining the perturbation strength parameter u constant

O This is inspired by the fact that different anchoring strategies o lead to
different stationary points m#?

% Equilibrium 7*
A B |nitial strategy !
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*

0 When the anchoring strategy o is close to NE, the corresponding
stationary point m#? is also close to NE

B |n order to bring the anchoring strategy o closer to NE, APMD re-initializes o
at a predefined interval T; by the current strategy ¢ (i.e., o « mt)

O This means that o is overrode by the approximation of "
[ Although the same idea is utilized by [Perolat et al., 2021; Abe et al., 2023],

they provide the convergence in an asymptotic manner
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Theoretical/Experimental Results

I Last-lterate Convergence Results

B A metric of proximity to NE:
N

GAP(TL’) = me%)c(z:(vnivi(n),ﬁi — T[i> .
=1

B Consider a setting where both Dy and G is set to the squared #?-distance, i.e.,

/ / 1 /
Dy (m;, m;) = G(my, ) = 5 ||m; — mi| |

Theorem 1 (Full Feedback: V,; v;(n") = V, v;(n"))
If we set T, = @(InT), then 7 converges to NE at the rate of 0(1/VT):

GAP(xT) = 0 (lnff)

Theorem 2 (Noisy Feedback: Wnivi(nt) = Vnivi(nt) + &)
If we set T, = ©(T*/°), then T converges to NE:

InT
0 (T1/10)'

B Asymptotic convergence beyond squared #?-distance can be achieved
[0 Bregman divergence, Reverse KL, a-divergence, Rényi divergence

E[GAP(")] =

I Experimental Results

B Full Feedback (Three-Player Biased Rock-Paper-Scissors)

= MWU - APMD = 0.1 Dy=KL G=KL APMD u = 1.0 Dy=L2 G=L2
OMWU  —— APMD u = 0.1 D,=KL G=RKL
3BRPS ‘ ~ Random payoff (10 actions) Random payoff (50 actions)
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B Noisy Feedback (Three-Player Biased Rock-Paper-Scissors)
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3BRPS Random payoff (10 actions)
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