
n APMD perturbs the payoff function 𝑣! by the divergence function 𝐺(⋅,⋅) 
between the current and anchoring strategies (i.e., 𝜋!" and 𝜎!)

p The strong convexity of 𝐺 enables the current strategy 𝜋" to converge to a 
stationary point 𝜋#,%, an approximate equilibrium

p To ensure convergence to NE, the magnitude of perturbation requires 
careful adjustment [Koshal et al., 2010; Tatarenko & Kamgarpour, 2019; Liu 
et al., 2023]

n APMD adaptively determines the magnitude of perturbation, while 
maintaining the perturbation strength parameter 𝜇 constant
p This is inspired by the fact that different anchoring strategies 𝜎 lead to 

different stationary points 𝜋#,%

pWhen the anchoring strategy 𝜎 is close to NE, the corresponding 
stationary point 𝜋#,%	 is also close to NE

n In order to bring the anchoring strategy 𝜎 closer to NE, APMD re-initializes 𝜎 
at a predefined interval 𝑇% by the current strategy 𝜋" (i.e., 𝜎& ← 𝜋")
p This means that 𝜎& is overrode by the approximation of 𝜋#,%!

pAlthough the same idea is utilized by [Perolat et al., 2021; Abe et al., 2023], 
they provide the convergence in an asymptotic manner
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Mirror Descent and Average-Iterate Convergence
n Mirror Descent (MD) updates the strategy 𝜋!" based on the gradient feedback 
-∇("𝑣! 𝜋

"

𝜋#$%& = arg	max
'∈𝒳!

𝜂$ *∇*!𝑣# 𝜋
$ , 𝑥 − 𝐷+ 𝑥, 𝜋#$

p 𝜂": learning rate
p𝐷) 𝜋!, 𝜋!* : Bregman divergence with strongly convex function

n The average strategies +,∑"-+
, 𝜋"  converge to NE (average-iterate convergence). 

However, the actual trajectory of 𝜋" may fail to converge [Mertikopoulos et al., 
2018].
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n This paper proposes a payoff perturbation technique for the Mirror Descent 
algorithms to find a Nash equilibrium (NE) in monotone games.

n 𝑵-Player Monotone Games
pA family of games including: Cournot competition [Bravo et al. 2018];
𝜆-cocoercive games [Lin et al., 2020]; Concave-convex games and zero-sum 
polymatrix games [Cai & Daskalakis, 2011; Cai et al., 2016]

n Various learning algorithms have been developed and scrutinized to compute NE 
efficiently.

Experimental Results
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n A metric of proximity to NE:

GAP 𝜋 ≔ max
.𝝅∈𝒳

;
!-+

2

∇("𝑣! 𝜋 , <𝜋! − 𝜋! .

n Consider a setting where both 𝐷)	 and 𝐺 is set to the squared ℓ3-distance, i.e., 
𝐷) 𝜋!, 𝜋!* = 𝐺 𝜋!, 𝜋!* = +

3 ||𝜋! − 𝜋!
*||3

Theorem 1 (Full Feedback: -∇("𝑣! 𝜋
" = ∇("𝑣! 𝜋

" )

If we set 𝑇% = Θ ln𝑇 , then 𝜋, converges to NE at the rate of E𝑂 1/ 𝑇 :

GAP 𝜋, = 𝑂
ln𝑇
𝑇

.

Theorem 2 (Noisy Feedback: -∇("𝑣! 𝜋
" = ∇("𝑣! 𝜋

" + 𝜉!") 
If we set 𝑇% = Θ 𝑇4/6 , then 𝜋, converges to NE:

𝔼 GAP 𝜋, = 𝑂
ln𝑇
𝑇&/&.

.

n Asymptotic convergence beyond squared ℓ𝟐-distance can be achieved
p Bregman divergence, Reverse KL, 𝛼-divergence, Rényi divergence

Last-Iterate Convergence Results

n Full Feedback (Three-Player Biased Rock-Paper-Scissors)

n Noisy Feedback (Three-Player Biased Rock-Paper-Scissors)
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Last-Iterate Convergence and Perturbation Approach
n Last-Iterate Convergence

p The updated strategy profile itself converges to NE
pOptimistic learning algorithms are representative algorithms that achieve last-

iterate convergence [Daskalakis et al., 2018; Daskalakis & Panageas, 2019; 
Mertikopoulos et al., 2019; Wei et al., 2021]. However, they perform 
suboptimally with feedback contaminated by some noise.

n Payoff Perturbation Approach (e.g., [Facchinei & Pang, 2003])
p Introducing strongly convex penalties to the players’ payoff functions
pOnly converges to an approximate NE
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