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Quantum Contextual Optimal Transport = QontOT
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Linking Optimal Transport and Quantum

It U 1s a unitary matrix
thenU O U

1S doubly stochastic

It 1s unknown whether a similarly natural classical

approach exists that can produce DSMs parametrically



Problem setting and QontOT ansatz
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Unitary from ansatz
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Comparison ot conditional neural OT methods
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Circuit to produce DSMs Circuit to embed transport maps
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* Circuit scales logarithmically. Precisely we need at least 4(log, n + 1) qubits to predict n X n matrices

 We need to collect at least O(nlogn) circuit shots

 For satisfactory sampling error e = 0.01 we even need = 0(n?/ £?) shots

* Real data® would require n = 10,000, i.e., = 56 qubits and with € = 0.01 > 1T shots

« Weusedatawithn=16 - > 20 qubitsand 2.5M shots
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Application: Drug dosage response prediction

Dosage perturbation data generator Cell type assignment via clustering Distributions of cell types
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POC: Quantum can predict OT plans conditionally
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Frobenius

Oualitative results on cell type distribution prediction

OT plan metrics Marginal metrics

Method SAE(]) Frob.(}) | L, () R?*
Identity 1.10 1.04 0.18 0.47
QontOT-Lp 0.78 0.61 0.17 0.49
QontOT-L s 0.92 0.68 0.16 0.57
CellOT 0.46 0.41 0.17 0.52
CellOT-homo 0.68 0.60 0.29 0.37
CondOT 0.45 0.40 0.18 0.56

1.0 o~
\.\
b B¢ = -® ')(
’\:\0 X XXX -Saati
. b
O 8 \Q..\. .*//.."
.\?x"&x‘x REX 5 o~
X % % %' \.\«x‘_x__.’-.,. x/ )'(
/ X " X' 'x \.-"/ \\ I
P X 3o XK 3¢ X X \\ 7 X |
0-6 i | \ X*"( \/ \ I
I \ 7\ Rl v |
I\ /) % x |
i X U 1 / \J
l, \\ ,X "\ 1I %
= b S —— / ‘x
0'4 X /x xX'X'—xx, \)2
s R W
/
Vi
021 ¢ 7/ Model Perturbation
| 7 —— QondOT —@— Linear
X
v — Average  -#- Reciprocal Root
0.0 0.2 0.4 0.6 0.8 1.0

Dosage

» Learning distributions conditionally to dosage ftor different cost functions

» Inout-of-distribution setting (not shown) still better than the two baselines (average & identity)

» Slightly interior to SOTA classical neural OT when plans have arbitrary marginal distributions

« Next: Fix marginals to be unitorm to better exploit inductive bias of QontOT

— Contextual relaxed assignment problem
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Hardware experiment on contextual relaxed assignment problem

Setup: 095 Contextual Prediction of Doubly Stochastic Matrices (DSM)
o 24 qubit experiment (IBM Sheerbroke)
» Depth 50, 70 ECR gates Q.21 -
» Dataset of 40 8x8 DSMs E
Vp
« No error mitigation N 0.20-
V)
» 235 optimization steps (gradient-free) é_’
L 0.19-
O
Result: H- = == QontOT 24 qubit Hardware = == QontOT 18 qubit simul.
0.18 -
- Good convergence ~ mEE S ST EEEEEEEEEEmEmTT
: - o - DSMLloss: Y Y Y Y Y Y N N N N N N N N N
24 qubit >> 18 qubit simulation Size: . M M M M M L XS X6 S S M M M M L

Dropout: 0.6 0.5 0.4 0.4 0.15 0.4 0.4 0.15 0.4 0.15 0.6 0.4 0.15 0 0.4
Residual: ' vy N Y N Y Y Y Y Y Y Y Y Y Y Y

(trained with Backprop) NeuCOT model configuration

» Better pertormance than classical NNs
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Further details in the paper:

* Proofs on expressivity of circuit

e Generalization to multidimensional OT

« Comparison of optimizing marginals vs. transport plans

« Various circuit ablation studies (e.g., cost functions)
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