

Prior Mismatch and Adaptation in PnP-ADMM with a Nonconvex Convergence Analysis

Shirin Shoushtari^{*}, Jiaming Liu^{*}, Edward P. Chandler, M. Salman Asif, Ulugbek S. Kamilov

ICML 2024

Known

Forward Problem: generate \boldsymbol{y} from \boldsymbol{x}

Inverse Problem: generate \boldsymbol{x} from \boldsymbol{y}

Imaging inverse problems are challenging problems!

Solution is not unique

- Data is noisy
- Signals can be high-dimensional

Recovery

Recovered

Object

Inverse problems can be solved with model-based optimization approach

Inverse problems can be solved with model-based optimization approach

• Image recovery can be formulated as an optimization task

$\widehat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) = \operatorname*{arg\,min}_{\boldsymbol{x} \in \mathbb{R}^n} \{g(\boldsymbol{x}) + h(\boldsymbol{x})\}$ Data-fidelity

Regularizer

Inverse problems can be solved with model-based optimization approach

• Image recovery can be formulated as an optimization task

$$\widehat{m{x}} = rgmin_{m{x}\in\mathbb{R}^n} f(m{x}) = rgmin_{m{x}\in\mathbb{R}^n} \{g(m{x} \ m{x}\in\mathbb{R}^n \ m{x}\in\mathbb{R}^n \}$$

$$\widehat{oldsymbol{x}} = \mathop{\mathrm{arg\,min}}_{oldsymbol{x}\in\mathbb{R}^n} \{rac{1}{2}\|oldsymbol{y}-oldsymbol{A}oldsymbol{x}\|_2^2 + au\|_2$$

$$\begin{array}{c} \text{Regularizer} \\ \downarrow \\ c) + h(\boldsymbol{x}) \end{array}$$

idelity

Regularized by TV

• Introduce variable z = x

• Introduce variable $s \longrightarrow$ Lagrange multiplier

• Form the augmented Lagrangian $\phi(\boldsymbol{x})$

$$(x, z, s) = g(x) + h(z) + \frac{1}{\gamma}s^{\mathsf{T}}(x - z) + \frac{1}{2}||x - z||_2^2$$

Minimization with respect to g

Minimization with respect to g

(ADMM)

$$\left(egin{array}{ll} \mathsf{prox}_{\gamma g}(oldsymbol{z}^{k-1} - oldsymbol{s}^{k-1}) & \mathsf{prox}_{\gamma g}(oldsymbol{v}) = rgmin_{oldsymbol{x} \in \mathbb{R}^n} \min\{rac{1}{2\gamma} \|oldsymbol{v} - oldsymbol{x}\|_2^2 + oldsymbol{s}_{\mathbf{x} \in \mathbb{R}^n} + oldsymbol{s}_{\mathbf{x} \in \mathbb{R}$$

Minimization with respect to q

Minimization with respect to h

(ADMM)

$$oldsymbol{x}^k \leftarrow \mathsf{prox}_{\gamma g}(oldsymbol{z}^{k-1} - oldsymbol{s}^{k-1})$$

Minimization with respect to h

(ADMM)

$$oldsymbol{x}^k \leftarrow \mathsf{prox}_{\gamma g}(oldsymbol{z}^{k-1} - oldsymbol{s}^{k-1})$$

$$\boldsymbol{z}^k \gets \mathsf{prox}_{\gamma h}(\boldsymbol{x}^k + \boldsymbol{s}^{k-1})$$

$$\mathsf{prox}_{\gamma h}(oldsymbol{v}) = rgmin_{oldsymbol{x} \in \mathbb{R}^n} \{rac{1}{2\gamma} \|oldsymbol{v} - oldsymbol{x}\|_2^2$$
 -

Minimization with respect to h

Update Variables

$$\mathsf{prox}_{\gamma g}(\bm{z}^{k-1}-\bm{s}^{k-1})$$

-
$$\mathsf{prox}_{\gamma h}(oldsymbol{x}^k+oldsymbol{s}^{k-1})$$

$$\leftarrow oldsymbol{s}^{k-1} + oldsymbol{x}^k - oldsymbol{z}^k$$

PnP methods are deep model-based architectures

D_{σ} : more noisy image \longrightarrow less noisy image

 \boldsymbol{z}

Learned model: Pre-trained image denoising neural networks

PnP methods are deep model-based architectures

$$(ext{ADMM})$$

 $oldsymbol{x}^k \leftarrow ext{prox}_{\gamma g}(oldsymbol{z}^{k-1} - oldsymbol{s}^{k-1})$
 $oldsymbol{z}^k \leftarrow ext{prox}_{\gamma h}(oldsymbol{x}^k + oldsymbol{s}^{k-1})$

MetFaces dataset

BreCaHAD dataset

MetFaces

CelebA

AFHQ

RxRx1

Mismatched priors result in suboptimal performance in PnP

28.86/0.8603

RxRx1

30.91/0.8994

HR

BreCaHAD

31.27/0.9025

MetFaces

• Suppose the mismatched denoiser is trained with the MSE loss

$$\widehat{\mathsf{D}}_{\sigma}(oldsymbol{z}) = rgmin \mathop{\mathbb{E}}\limits_{\widehat{\mathsf{D}}} \|oldsymbol{x} + oldsymbol{z}_{\mathcal{D}}^{-1}\|oldsymbol{x}\|$$

$- \widehat{\mathsf{D}}(\boldsymbol{z}) \|_{2}^{2}$ MMSE denoiser for $\boldsymbol{z} = \boldsymbol{x} + \boldsymbol{e}$

• Suppose the mismatched denoiser is trained with the MSE loss

$$\widehat{\mathsf{D}}_{\sigma}(oldsymbol{z}) = rgmin \mathop{\mathbb{E}}\limits_{\widehat{\mathsf{D}}} \|oldsymbol{x} - oldsymbol{w}\|_{\widehat{\mathsf{D}}}$$

bounded distance

$$\|\widehat{\mathsf{D}}_{\sigma}(oldsymbol{x}^k)$$

$- \widehat{\mathsf{D}}(\boldsymbol{z}) \|_{2}^{2}$ MMSE denoiser for $\boldsymbol{z} = \boldsymbol{x} + \boldsymbol{e}$

• Assume that mismatched denoiser \widehat{D}_{σ} and target denoiser D_{σ} have a

$\| - \mathsf{D}_{\sigma}(\boldsymbol{x}^k) \|_2 \leq \delta_k$

• Suppose the denoiser is trained with the MSE loss

$$\widehat{\mathsf{D}}_{\sigma}(oldsymbol{z}) = rgmin \mathop{\mathbb{E}}\limits_{\widehat{\mathsf{D}}} \|oldsymbol{x} \ \cdot \ \mathbf{z}$$

bounded distance

$$\|\widehat{\mathsf{D}}_{\sigma}(oldsymbol{x}^k)$$
 -

• Define the error $\varepsilon_k := \max\{\delta_k, \delta_k^2\}$

- $\widehat{\mathsf{D}}(\boldsymbol{z}) \|_{2}^{2}$ MMSE denoiser for $\boldsymbol{z} = \boldsymbol{x} + \boldsymbol{e}$

• Assume that mismatched denoiser \widehat{D}_{σ} and target denoiser D_{σ} have a

- $\| \mathsf{D}_{\sigma}(\boldsymbol{x}^k) \|_2 \leq \delta_k$

Run PnP-ADMM with L-smooth regularization term, mismatched MMSE denoiser $\widehat{\mathsf{D}}_{\sigma}$ with per-iteration ε_k error, and penalty parameter $0 < \gamma \leq (4L)$ for $t \geq 1$ iterations. There exits f = g + h

$$\frac{1}{t}\sum_{k=1}^{t} \|\nabla f(\boldsymbol{x}^{k})\|_{2}^{2} \leq \frac{A_{1}}{t}(\phi(\boldsymbol{x}^{0},\boldsymbol{z}^{0},\boldsymbol{s}^{0})-\phi^{*})+A_{2}\overline{\varepsilon}_{t}$$

• $\bar{\varepsilon}_t = (1/t)(\varepsilon_1 + \dots + \varepsilon_t)$ • If is summable, then $\nabla f(\boldsymbol{x}^t) \to \boldsymbol{0}$

• Suppose the denoiser is trained with the MSE loss without any mismatch $\mathsf{D}_{\sigma}(\boldsymbol{z}) = rgmin_{\mathsf{D}} \mathbb{E}[\|\boldsymbol{x} - \mathsf{D}(\boldsymbol{z})\|_{2}^{2}]$

$$\frac{1}{t} \sum_{k=1}^{t} \|\nabla f(\boldsymbol{x}^k)\|_2^2$$

Run PnP-ADMM with L-smooth regularization term, mismatched MMSE denoiser $\widehat{\mathsf{D}}_{\sigma}$ with per-iteration ε_k error, and penalty parameter $0 < \gamma \leq (4L)$ for $t \geq 1$ iterations. Then we have

$$\frac{1}{t}\sum_{k=1}^{t} \|\nabla f(\boldsymbol{x}^{k})\|_{2}^{2} \leq \frac{A_{1}}{t} (\phi(\boldsymbol{x}^{0}, \boldsymbol{z}^{0}, \boldsymbol{s}^{0}) - \phi^{*}) + A_{2}\overline{\varepsilon}_{t}$$

Run PnP-ADMM with L-smooth regularization term, target MMSE denoiser D_{σ} , and penalty parameter $0 < \gamma \leq (4L)$ for $t \geq 1$ iterations. Then we have

$$\leq rac{C}{t}(\phi(oldsymbol{x}^0,oldsymbol{z}^0,oldsymbol{s}^0)-\phi^*)$$

Domain Adaptation is an strategy to close the gap that arises with shift distribution in PnP priors

Domain Adaptation is an strategy to close the gap that arises with shift distribution in PnP priors

Domain Adaptation is an strategy to close the gap that arises with Distribution shift in PnP priors

Domain Adaptation is an strategy to close the gap that arises with Distribution shift in PnP priors

Adapting BreCaHAD to MetFaces

To conclude

- Influence of mismatched denoisers in PnP-ADMM can be evaluated theoretically and numerically
- methods

• Domain adaptation is able to reduce the effect of distribution mismatch in PnP