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Recovered Object

Solution is not unique
 Data is noisy
 Signals can be high-dimensional

Imaging inverse problems are challenging problems!

Recovery
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Regularized by TV

Total Variation
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Learned model: Pre-trained image denoising neural networks 

: more noisy image                less noisy image
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Mismatched priors result in suboptimal performance in PnP
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• Suppose the denoiser is trained with the MSE loss without any mismatch 
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To conclude  

• Influence of mismatched denoisers in PnP-ADMM can be evaluated 

theoretically and numerically 

• Domain adaptation is able to reduce the effect of distribution mismatch in PnP 

methods 


