

Prior Mismatch and Adaptation in PnP-ADMM with a Nonconvex Convergence Analysis

Shirin Shoushtari*, Jiaming Liu*, Edward P. Chandler, M. Salman Asif, Ulugbek S. Kamilov

ICML 2024

Many computational imaging problems can be viewed as inverse problems

Unkown **Known**

Many computational imaging problems can be viewed as inverse problems

Many computational imaging problems can be viewed as inverse problems

Forward Problem: generate y from x

Many computational imaging problems can be viewed as inverse problems

Inverse Problem: generate \boldsymbol{x} from \boldsymbol{y}

Solution is not unique

- Data is noisy
- Signals can be high-dimensional

Imaging inverse problems are challenging problems!

Recovered Object

Inverse problems can be solved with model-based optimization approach

Inverse problems can be solved with model-based optimization approach

$\widehat{\boldsymbol{x}} = \argmin_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) = \argmin_{\boldsymbol{x} \in \mathbb{R}^n} \{ g(\boldsymbol{x}) + h(\boldsymbol{x}) \}$ **Data-fidelity**

• Image recovery can be formulated as an optimization task

Regularizer

Inverse problems can be solved with model-based optimization approach

• Image recovery can be formulated as an optimization task

$$
\widehat{\boldsymbol{x}} = \argmin_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) = \argmin_{\boldsymbol{x} \in \mathbb{R}^n} \{g(\boldsymbol{x})\}
$$

$$
\text{Data-fi}
$$

$$
\widehat{\boldsymbol{x}} = \argmin_{\boldsymbol{x} \in \mathbb{R}^n} \{\frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A} \boldsymbol{x}\|_2^2 + \tau |
$$

$$
\begin{array}{c}\text{Regularizer} \\ \text{[c]} \\ \text{[d]} \\ \text{[e]} \\ \text{[f]} \\ \text{[e]} \\ \text{[f]} \\ \text{[f]} \\ \text{[g]} \\ \text{[g]} \\ \text{[g]} \\ \text{[h]} \\ \text{[h]} \\ \text{[g]} \\ \text{[h]} \\ \text{[h]} \\ \text{[h]} \\ \text{[h]} \\ \text{[i]} \\ \text{[j]} \\ \text{[j
$$

idelity

Regularized by TV

• Introduce variable $z = x$

• Introduce variable $s \longrightarrow$ Lagrange multiplier

• Form the augmented Lagrangian $\phi(\boldsymbol{x})$

$$
f(\boldsymbol{z},\boldsymbol{s})=g(\boldsymbol{x})+h(\boldsymbol{z})+\frac{1}{\gamma}\boldsymbol{s}^{\mathsf{T}}(\boldsymbol{x}-\boldsymbol{z})+\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{z}\|_{2}^{2}
$$

Minimization with respect to g

Minimization with respect to q

 $\boldsymbol{x}^k \leftarrow$

(ADMM)

$$
\text{prox}_{\gamma g}(\bm{z}^{k-1} - \bm{s}^{k-1}) \quad \text{prox}_{\gamma g}(\bm{v}) = \argmin_{\bm{x} \in \mathbb{R}^n} \{ \frac{1}{2\gamma} \|\bm{v} - \bm{x}\|_2^2 -
$$

Minimization with respect to q

Minimization with respect to h

(ADMM)

$$
\boldsymbol{x}^k \leftarrow \text{prox}_{\gamma g}(\boldsymbol{z}^{k-1} - \boldsymbol{s}^{k-1})
$$

(ADMM)

$$
\boldsymbol{x}^k \leftarrow \text{prox}_{\gamma g}(\boldsymbol{z}^{k-1} - \boldsymbol{s}^{k-1})
$$

$$
\boldsymbol{z}^k \leftarrow \text{prox}_{\gamma h}(\boldsymbol{x}^k + \boldsymbol{s}^{k-1})
$$

$$
\text{prox}_{\gamma h}(\boldsymbol{v}) = \argmin_{\boldsymbol{x} \in \mathbb{R}^n} \{ \frac{1}{2\gamma} \|\boldsymbol{v} - \boldsymbol{x}\|_2^2 ~.
$$

Minimization with respect to h

$$
\left(\mathrm{ADMM}\right)
$$

$$
\text{prox}_{\gamma g}(\boldsymbol{z}^{k-1} - \boldsymbol{s}^{k-1})
$$

$$
\text{- prox}_{\gamma h} (\boldsymbol{x}^k + \boldsymbol{s}^{k-1})
$$

$$
\leftarrow s^{k-1} + x^k - z^k
$$

Minimization with respect to h

Update Variables

Learned model: Pre-trained **image denoising** neural networks

PnP methods are deep model-based architectures

D_{σ} : more noisy image \longrightarrow less noisy image

 \boldsymbol{z}

PnP methods are deep model-based architectures

$$
(ADMM)
$$
\n
$$
x^{k} \leftarrow \text{prox}_{\gamma g}(z^{k-1} - s^{k-1})
$$
\n
$$
z^{k} \leftarrow \text{prox}_{\gamma h}(x^{k} + s^{k-1})
$$
\n
$$
s^{k} \leftarrow s^{k-1} + x^{k} - z^{k}
$$

MetFaces dataset

BreCaHAD dataset

MetFaces dataset

Mismatched priors result in suboptimal performance in PnP

28.86/0.8603

RxRx1

30.91/0.8994

BreCaHAD

31.27/0.9025

MetFaces

• Suppose the mismatched denoiser is trained with the MSE loss

$$
\widehat{\mathsf{D}}_{\sigma}(\boldsymbol{z}) = \argmin_{\widehat{\mathsf{D}}} \mathbb{E}[\|\boldsymbol{x} -
$$

$-\widehat{D}(z)||_2^2$ MMSE denoiser for $z = x + e$

PnP-ADMM theoretically converges for nonconvex data term and expansive MMSE denoisers

bounded distance

$$
\|\widehat{\mathsf{D}}_{\sigma}(\bm{x}^k)
$$

$-\widehat{D}(z)||_2^2$ MMSE denoiser for $z = x + e$

• Assume that mismatched denoiser \hat{D}_{σ} and target denoiser D_{σ} have a

$-\|D_{\sigma}(\boldsymbol{x}^{k})\|_{2} \leq \delta_{k}$

• Suppose the mismatched denoiser is trained with the MSE loss

$$
\widehat{D}_{\sigma}(z) = \argmin_{\widehat{D}} \mathbb{E}[\|x\|]
$$

PnP-ADMM theoretically converges for nonconvex data term and expansive MMSE denoisers

bounded distance

$$
\|\widehat{\mathsf{D}}_{\sigma}(\boldsymbol{x}^k)\|
$$

• Define the error $\varepsilon_k := \max\{\delta_k, \delta_k^2\}$

-
- $-\widehat{D}(z)||_2^2$ MMSE denoiser for $z = x + e$

• Assume that mismatched denoiser \hat{D}_{σ} and target denoiser D_{σ} have a

- $-\left\|D_{\sigma}(\boldsymbol{x}^{k})\right\|_{2} \leq \delta_{k}$
	-

PnP-ADMM theoretically converges for nonconvex data term and expansive MMSE denoisers

• Suppose the denoiser is trained with the MSE loss

$$
\widehat{\mathsf{D}}_{\sigma}(z) = \argmin_{\widehat{\mathsf{D}}} \mathbb{E}[\|x\|]
$$

PnP-ADMM theoretically converges for nonconvex data term and expansive MMSE denoisers

Run PnP-ADMM with L-smooth regularization term, mismatched MMSE denoiser \hat{D}_{σ} with per-iteration ε_k error, and penalty parameter $0 < \gamma \leq (4L)$ for $t \geq 1$ iterations. There exits $f = g + h$

$$
\frac{1}{t}\sum_{k=1}^t \|\nabla f(\boldsymbol{x}^k)\|_2^2 \leq \frac{A_1}{t}(\phi(\boldsymbol{x}^0, \boldsymbol{z}^0, \boldsymbol{s}^0) - \phi^*) + A_2\overline{\varepsilon}_t
$$

 $\overline{\varepsilon}_t = (1/t)(\varepsilon_1 + \cdots + \varepsilon_t)$ \blacktriangleright \exists^k is summable, then $\nabla f(x^t) \rightarrow 0$

PnP-ADMM theoretically converges for nonconvex data term and expansive MMSE denoisers

• Suppose the denoiser is trained with the MSE loss without any mismatch $D_{\sigma}(z) = \argmin_{D} \mathbb{E}[\|x - \mathsf{D}(z)\|_2^2]$

$$
\frac{1}{t}\sum_{k=1}^t \|\nabla f(\boldsymbol{x}^k)\|_2^2
$$

Run PnP-ADMM with L-smooth regularization term, mismatched MMSE denoiser \widehat{D}_{σ} with per-iteration ε_k error, and penalty parameter $0 < \gamma \leq (4L)$ for $t \geq 1$ iterations. Then we have

$$
\frac{1}{t}\sum_{k=1}^t \|\nabla f(\bm{x}^k)\|_2^2 \le \frac{A_1}{t}(\phi(\bm{x}^0,\bm{z}^0,\bm{s}^0)-\phi^*)\mathbf{H} + A_2 \overline{\varepsilon}_t \mathbf{H}
$$

Run PnP-ADMM with L-smooth regularization term, target MMSE denoiser D_{σ} , and penalty parameter $0 < \gamma \leq (4L)$ for $t \geq 1$ iterations. Then we have

$$
\leq \frac{C}{t}(\phi(\boldsymbol{x}^0, \boldsymbol{z}^0, \boldsymbol{s}^0)-\phi^*)
$$

Domain Adaptation is an strategy to close the gap that arises with shift distribution in PnP priors

-
-
-
-
-
- -
- - -

Domain Adaptation is an strategy to close the gap that arises with shift distribution in PnP priors

Domain Adaptation is an strategy to close the gap that arises with Distribution shift in PnP priors

Domain Adaptation is an strategy to close the gap that arises with Distribution shift in PnP priors

Adapting BreCaHAD to MetFaces

To conclude

- Influence of mismatched denoisers in PnP-ADMM can be evaluated theoretically and numerically
- methods

• Domain adaptation is able to reduce the effect of distribution mismatch in PnP