Consistent Submodular Maximization

-
== ——, =
N —— —
5 — —
- =]
(NN -
N 4 -

Paul Federico Silvio Ashkan Morteza

Dutting Fusco Lattanzi Norouzi-Fard Zadimoghaddam
Google Sapienza Google Google Google
ICML 2024

Vienna - Austria - July 24, 2024

Submodularity

Submodularity models diminishing returns:

F(S+x)—F(S)>F(T+x)—f(T), ¥YSCTCV,VxeV\T

Figure 1: Influence Maximization Figure 2: Data Summarization

Consistent submodular maximization

> Elements arrive online e1, e, ...

> Ve ={e1,...,e:} C Vis the set of first t elements

> OPT; is the best subset of k elements in V;

> Goal: maintain a solution S;, with |S;| < k such that

(Approximation) f(OPT;) < af(S:)
(C-Consistency) |S; \ Si—1| < C € 0(1)

Our Result

> Previous Results:
m Recomputing the solution from scratch is a ¢/e—1 approx. but is Q(k)-consistent.
m SWAPPING by Chakrabarti & Kale (2015) is a consistent 4-approximation.
> Our first algorithm, ENCOMPASSING-SET maintains a
(3.147 + O(/k))-approximate solution and is 1-consistent.

> Our second algorithm, CHASING-LOCAL-OPT takes in input a precision ¢ and
maintains a (2.619 + ¢)-approximation algorithm that is O(1/<)-consistent

> We prove that no deterministic algorithm can maintain an approximation better
than 2, while enforcing consistency

ENCOMPASSING-SET

Algorithm 1 ENCOMPASSING-SET

1: Environment: Stream V, function f, cardinality k
2: Threshold parameter 5 < 1.14 > A benchmark set B; is used

3: By+ 0,8y« 0,and t « 1 .
4: for e; new element arriving do to decide whether to add or

50 if f(er | Bi—1) > £ f(Bi—1) then discard any new element e;
6 B+ Bi1 +e; . .

7 S, S 1 4e > The solution S; contains the
8 if [S;| = k + 1 then last k elements added to B;
9: remove from S; the element e, with smallest s

10: t—t+1

> The benchmark has good value compared to OPT;

> The elements in B; \ S; are geometrically smaller than the ones still in S;

CHASING-LocAL-OPT

Algorithm 2 MIN-SWAP(S, z)
1: Input: Set S and element z

2: Environment: Function f and cardinality & > CHASING-LOCAL-OPT updates the
3: if | 9] < k, then return S + = . . .
4 Letr € S be any clement s.t. f(r | S —r) < /()i solution S; via local improvements.
5: ret S—r+z . .
e e > If Sy is an approx. local optimum then
Algorithm 3 CHASING-LOCAL-OPT it is a good approximation of OPTy,
I+ Input: Precision parameter & - as no element x € OPT, verifies
2: Environment: Stream V', function f, cardinality k&
3?¢F@7NFE1OE¢%W f(X’S)Z¢/kf(S)

4: Sy Dandt <+ 1
5: for e; new element arriving do

> If this is not the case, then if means

6 if f(ee | Se-1) = £(Se-1) then that many local swaps have happened,
7 Sy ¢~ MIN-SWAP(S;_1, e;) .

8 fori=1,...,Ndo so that the value of the solution has

9: if 3z € V, such that f(z | 5,) > £f(S,) then :

10: Sy + MIN-SWAP(S;, z) increased a lot

11: t—t+1

Impossibility Result

Consider a covering instance on an universe of n elements, and k = n/2.

00000
!

OO000O
0000

n singletons arrive, and the algorithm selects half of them

A subset covering the selected elements arrives, so that the optimal solution has
value n, as opposed to the algorithm that cannot significantly improve over n/2.

Future Directions

> Would randomization actually help?
> Can we maintain consistency in the fully dynamic setting?

> Can we tackle more complex constraints?

Thank you!

