
Consistent Submodular Maximization

Paul Federico Silvio Ashkan Morteza
Dütting Fusco Lattanzi Norouzi-Fard Zadimoghaddam

Google Sapienza Google Google Google

ICML 2024

Vienna - Austria - July 24, 2024

Submodularity

Submodularity models diminishing returns:

f (S + x)− f (S) ≥ f (T + x)− f (T), ∀S ⊆ T ⊆ V , ∀x ∈ V \ T

Consistent submodular maximization

▷ Elements arrive online e1, e2, . . .

▷ Vt = {e1, . . . , et} ⊆ V is the set of first t elements
▷ OPTt is the best subset of k elements in Vt

▷ Goal: maintain a solution St , with |St | ≤ k such that
1 (Approximation) f (OPTt) ≤ αf (St)
2 (C -Consistency) |St \ St−1| ≤ C ∈ O(1)

Our Result

▷ Previous Results:
Recomputing the solution from scratch is a e/e−1 approx. but is Ω(k)-consistent.
Swapping by Chakrabarti & Kale (2015) is a consistent 4-approximation.

▷ Our first algorithm, Encompassing-Set maintains a
(3.147 + O(1/k))-approximate solution and is 1-consistent.

▷ Our second algorithm, Chasing-Local-Opt takes in input a precision ε and
maintains a (2.619 + ε)-approximation algorithm that is Õ(1/ε)-consistent

▷ We prove that no deterministic algorithm can maintain an approximation better
than 2, while enforcing consistency

Encompassing-Set

▷ A benchmark set Bt is used
to decide whether to add or
discard any new element et

▷ The solution St contains the
last k elements added to Bt

▷ The benchmark has good value compared to OPTt

▷ The elements in Bt \ St are geometrically smaller than the ones still in St

Chasing-Local-Opt

▷ Chasing-Local-Opt updates the
solution St via local improvements.

▷ If St is an approx. local optimum then
it is a good approximation of OPTt ,
as no element x ∈ OPTt verifies
f (x | S) ≥ ϕ/k · f (S)

▷ If this is not the case, then if means
that many local swaps have happened,
so that the value of the solution has
increased a lot

Impossibility Result

Consider a covering instance on an universe of n elements, and k = n/2.

1 n singletons arrive, and the algorithm selects half of them
2 A subset covering the selected elements arrives, so that the optimal solution has

value n, as opposed to the algorithm that cannot significantly improve over n/2.

Future Directions

▷ Would randomization actually help?
▷ Can we maintain consistency in the fully dynamic setting?
▷ Can we tackle more complex constraints?

Thank you!

