Consistent Submodular Maximization

Paul Dütting	Federico Fusco	Silvio Lattanzi	Ashkan Norouzi-Fard	Morteza Zadimoghaddam	
Google	Sapienza	Google	Google	Google	

ICML 2024

Vienna - Austria - July 24, 2024

Submodularity

Submodularity models diminishing returns:

$$f(S+x)-f(S) \geq f(T+x)-f(T), \quad \forall S \subseteq T \subseteq V, \; \forall x \in V \setminus T$$

Figure 1: Influence Maximization

Consistent submodular maximization

- \triangleright Elements arrive online e_1, e_2, \ldots
- $\triangleright V_t = \{e_1, \ldots, e_t\} \subseteq V$ is the set of first t elements
- \triangleright OPT_t is the best subset of k elements in V_t
- \triangleright **Goal**: maintain a solution S_t , with $|S_t| \leq k$ such that
 - 1 (Approximation) $f(OPT_t) \le \alpha f(S_t)$
 - 2 (C-Consistency) $|S_t \setminus S_{t-1}| \le C \in O(1)$

Our Result

- Previous Results:
 - Recomputing the solution from scratch is a e/e-1 approx. but is $\Omega(k)$ -consistent.
 - SWAPPING by Chakrabarti & Kale (2015) is a consistent 4-approximation.
- ▷ Our *first* algorithm, ENCOMPASSING-SET maintains a (3.147 + O(1/k))-approximate solution and is 1-consistent.
- ▷ Our second algorithm, CHASING-LOCAL-OPT takes in input a precision ε and maintains a $(2.619 + \varepsilon)$ -approximation algorithm that is $\tilde{O}(1/\varepsilon)$ -consistent
- ▷ We prove that *no deterministic* algorithm can maintain an approximation better than 2, while enforcing consistency

Encompassing-Set

Algorithm 1 ENCOMPASSING-SET

1: **Environment:** Stream V, function f, cardinality k 2: Threshold parameter $\beta \leftarrow 1.14$ 3: $B_0 \leftarrow \emptyset$, $S_0 \leftarrow \emptyset$, and $t \leftarrow 1$ 4: for e_t new element arriving do if $f(e_t \mid B_{t-1}) \geq \frac{\beta}{k} f(B_{t-1})$ then 5: $B_t \leftarrow B_{t-1} + e_t$ 6: 7: $S_t \leftarrow S_{t-1} + e_t$ 8: if $|S_t| = k + 1$ then remove from S_t the element e_s with smallest s9: $t \leftarrow t + 1$ 10:

- A benchmark set B_t is used to decide whether to add or discard any new element e_t
- ▷ The solution S_t contains the last k elements added to B_t

- \triangleright The benchmark has *good* value compared to OPT_t
- \triangleright The elements in $B_t \setminus S_t$ are *geometrically* smaller than the ones still in S_t

CHASING-LOCAL-OPT

Algorithm 2 MIN-SWAP(S, x)

1: **Input:** Set S and element x

- 2: **Environment:** Function f and cardinality k
- 3: if |S| < k, then return S + x
- 4: Let $r \in S$ be any element s.t. $f(r \mid S r) \leq f(S)/k$

5: return S - r + x

Algorithm 3 CHASING-LOCAL-OPT

1: Input: Precision parameter ε 2: **Environment:** Stream V, function f, cardinality k 3: $\phi \leftarrow \frac{\sqrt{5}+1}{2}, N \leftarrow \left[\frac{1}{2}\log_{\phi}\frac{12}{2}\right]$ 4: $S_0 \leftarrow \emptyset$ and $t \leftarrow 1$ 5: for e_t new element arriving do if $f(e_t \mid S_{t-1}) \geq \frac{\phi}{h} f(S_{t-1})$ then 6: $S_t \leftarrow \text{MIN-SWAP}(S_{t-1}, e_t)$ 7: for i = 1, ..., N do 8: if $\exists x \in V_t$ such that $f(x \mid S_t) \geq \frac{\phi}{k} f(S_t)$ then 9: $S_t \leftarrow \text{MIN-SWAP}(S_t, x)$ 10: 11: $t \leftarrow t+1$

- ▷ CHASING-LOCAL-OPT updates the solution S_t via local improvements.
- ▷ If S_t is an approx. local optimum then it is a good approximation of OPT_t , as no element $x \in OPT_t$ verifies $f(x \mid S) \ge \phi/k \cdot f(S)$
- If this is not the case, then if means that many local swaps have happened, so that the value of the solution has increased a lot

Impossibility Result

Consider a covering instance on an universe of *n* elements, and k = n/2.

- **1** *n* singletons arrive, and the *algorithm* selects half of them
- 2 A subset covering the selected elements arrives, so that the optimal solution has value n, as opposed to the *algorithm* that cannot significantly improve over n/2.

Future Directions

- Would randomization actually help?
- ▷ Can we maintain consistency in the *fully dynamic* setting?
- ▷ Can we tackle more *complex* constraints?

Thank you!