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Prior Methods

Distribution-shift based methods [1, 2, 3]

o  Shift the output distribution towards a subset of tokens in the vocabulary

o Statistically estimate the likelihood that the probability distribution has shifted
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Prior Methods: Distribution-Shift Based Methods

cat jumped on the

Splitting ratio y
Pseudo random function

Hash of previous token as seed to partition vocabulary into red-green list



Prior Methods: Distribution-Shift Based Methods
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Add § to all the green tokens to bias the distribution towards green-list



Prior Methods: Distribution-Shift Based Methods

Detection
o Null hypothesis that the next token is selected without the knowledge of green-red list rule, i.e.,
without addition of &

o  Given hash function, count the number of green tokens in the generation
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o Calculate the z-score, z
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Limitations

Face challenges in improving the semantics and detectability at the same time

m Improving one compromises the other

Lack adaptive mechanism to adjust y and é appropriately

« Ex:Sunrisesinthe . ltis ‘east’ with certainty. High § and low y might not select ‘east’.



Proposed Method

Propose learning token-specific splitting ratio and watermark logit, i.e., y; and §;
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Proposed Method

Differentiable sampling for splitting the vocabulary

o Foreach token v € VV, sample y,(,t) ~ B(y;:), Bernoulli distribution parameterized by y,.
()

v~ = 1, then the token v belongs to green list else red list

o Ify

o  Gumbel softmax trick makes sampling process differentiable
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Proposed method

Given original logits lff) for token v, modified logits after biasing the green-list tokens

L) =17+, %6,
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Proposed Method

Training objectives
o Detection loss

o Semantic loss
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Proposed Method

Detection loss
o Since we have a token-specific y; and §;, the z-score expression has to be updated based on

this distribution
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Proposed Method

Theorem: Consider T independent Bernoulli random variables X3, ..., X+, each with means
Ui, -, U, 0 < u<1Vtel,..T. The sum of these variables, ).;—; X;, follows a Poisson
binomial distribution. When T is sufficiently large, this distribution can be approximated by a

Gaussian distribution with mean: Y¥_, u, and variance: ¥.7_; u.(1 — up).
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Proposed Method

Islg—Yt=1 Ve
VI ve(1-vp)

Modified Z-score = to account for varying y;

Detection loss
o Improve detectability by maximizing this objective

o However, |s|¢, count of green tokens, is non-differentiable w.r.t y; and §;
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Proposed Method

Detection loss

t
sz:l p;2_2{=1 Yt

Vi ve(1-vp)

o Propose differentiable surrogate z = , Where pgr) is the probability of selecting a

green token.

A

o Maximize Z or minimize detection loss, L, = —Z
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Proposed Method

Semantic loss

o Generate sentence embeddings of texts before and after watermarking, i.e., s and s,, using the
SimCSE model fy

o Maximize the cosine similarity between them, cosgi, (fo (s), fo(sw))

o Thus, minimize semantic loss, Ls = — coSg;m (fo (), fo(sw))
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Proposed Method

Multi-objective Optimization
o  Optimizing for two competing loss functions L, and Lg
min Lp (G, Gs) and min Lg(G,, Gs)
Gy.Gs Gy.Gs

o Estimate pareto optimal solutions using multiple-gradient descent algorithm (MGDA) [5]
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Experimental Setup

e Main experiments
o C4 dataset
m Training split 6400, Validation split 500, Test split 500
o Generation length set to 200
e /-score threshold is empirically determined on respective test sets

o Set z-score threshold to maintain FPR at 0% and 1%
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FPR = 0% FPR = 1%
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Comparison of the trade-off for semantic integrity and detectability of different methods applied to OPT-1.3B.
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Method TPR @ 0% TPR@1% SimCSE

EXP-edit 0.922 0.996 0.655
EXP-edit (Top-£=50) 0.968 0.996 0.677
Ours (Top-k=50) 1.000 1.000 0.713

Comparison of our method with indistinguishable method - EXP-edit and its variant EXP-edit (Top-k=50).
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Method

| Generation (s) | Detection (s)

No Watermark
KGW
SWEET
EXP-edit

SIR

MultiBit

Ours

3.220
3.827
4.030
24.693
8.420
6.500

3.946

0.067
0.127
155.045
0.337
0.610
0.166

Generation and detection speed on OPT-1.3B for generating 200 tokens, measured in seconds.
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FPR = 0% FPR = 1% FPR = 0% FPR = 1%
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Performance of Ours (trained on OPT-1.3B) and KGW when applied to LLAMA2 7B, 13B, and 70B.
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c. LLAMA2 70B
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a. Dipper paraphrase attack
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b. Copy-Paste-3 attack

Comparison of our method with KGW under dipper paraphrase attack (left) and copy-
paste-3 attack (right). Please refer to the paper for other attack results.
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Conclusions

Propose to adapt the watermark strength based on the semantics of the preceding
token

Propose a light-weight network to output token-specific y; and 6;

Propose a differentiable surrogate of z-score metric for optimization

Optimize in a multi-objective optimization framework

Extensive experiments on various scenarios shows the efficacy of our proposed

method
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