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(b) Consistency Training for CM’s ControlNet
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(a) Training a ControlNet based on the text-to-image diffusion model (DM) and directly applying it to the text-to-image 
consistency model (CM); (b) consistency training for ControlNet based on the text-to-image consistency model; (c) 
consistency training for a unified adapter to utilize better transfer of DM's ControlNet.
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p Applying ControlNet of Text-to-Image Diffusion Models

p Consistency Training for ControlNet
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p Consistency Training for A Unified Adapter
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Experiment



Quantitative Results
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Quantitative comparison of different methods. NFEs means the number of function evaluations. ×2	 for the diffusion 
model because classifier-free guidance is used. Time is recorded based on the generation of a 1024×1024 image.
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Visual comparison of different methods of adding controls.
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Visual results of CM’s ControlNet with different prompts. Image resolution:1024×1024. NFEs: 4.

sketch “a high-quality and 
professional image”

“A yellow dog lies on the 
grassland and enjoys the sun”

“watercolor style, a dog 
lies on the beach”

Prompt: “a photo of sks dog” Prompt: “a photo of sks dog on the beach”
Customize

Visual results of customizing images using consistency training. Image resolution: 1024×1024. NFEs: 4.
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Correlation analysis between CM's and DM's ControlNet. (a) shows the decreased correlation along the depth. (b) shows 
amplitude of Fourier-transformed features. These results validate that both ControlNets generally agree on high-level 
controls but differs on low-level controls.

Normalized Depth=0.0 Normalized Depth=1.0

(a) Cosine similarity across network depth between 
CM’s ControlNet and DM's ControlNet

(b) Log amplitude of Fourier-transformed control features
from CM's and DM's ControlNet
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p ControlNet of DM can transfer high-level semantic controls to 
CM; however, it often fails to accomplish low-level fine controls

p CM’s ControlNet can be trained from scratch using the
consistency training technique. Empirically, we can find that 
consistency training can accomplish more satisfactory conditional 
generation

p A unified adapter trained with the consistency training technique 
is capable of mitigating the discrepancy between DMs and CMs, 
thereby facilitating to transfer DM’s ControlNet
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