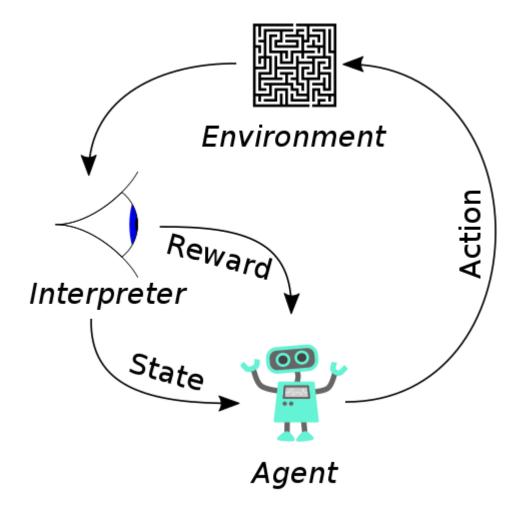
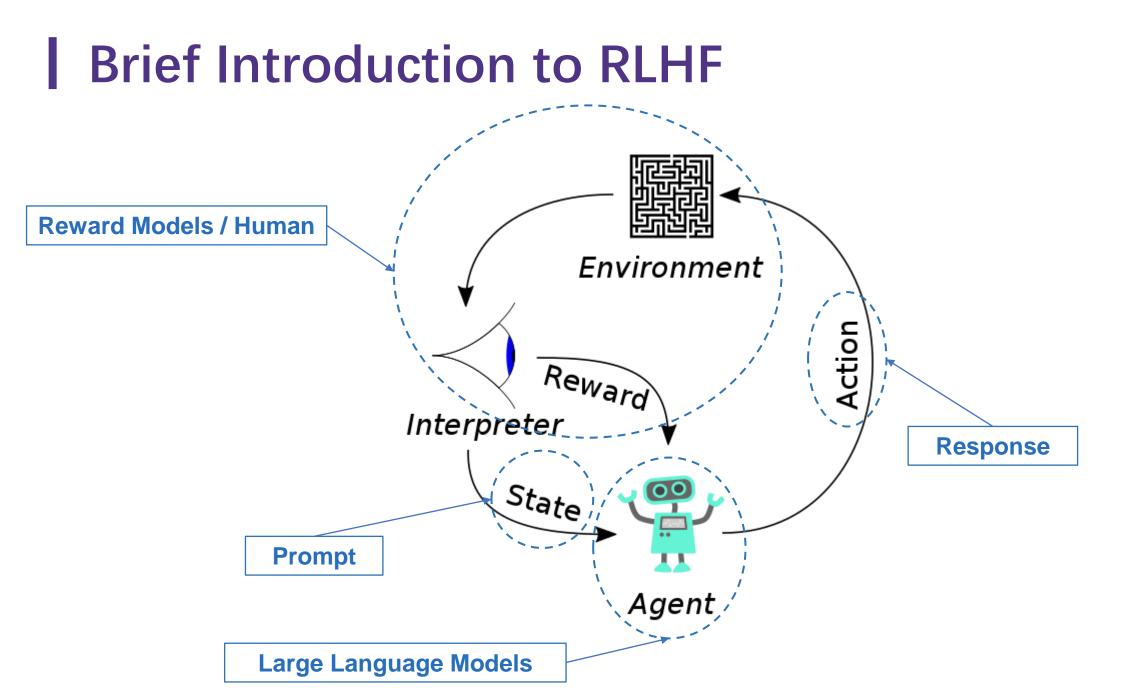


UltraFee୍ଦ୍ରାର୍ବ୍ରack : Boosting Language Models with Scaled AI Feedback

THUNLP

Ganqu Cui* - Lifan Yuan* - Ning Ding - Guanming Yao - Bingxiang He - Wei Zhu - Yuan Ni - Guotong Xie - Ruobing Xie - Yankai Lin - Zhiyuan Liu - Maosong Sun 2024/06/04





Early OpenAI practices

- First introduced in RL problems
- Then applied on language models for summarization

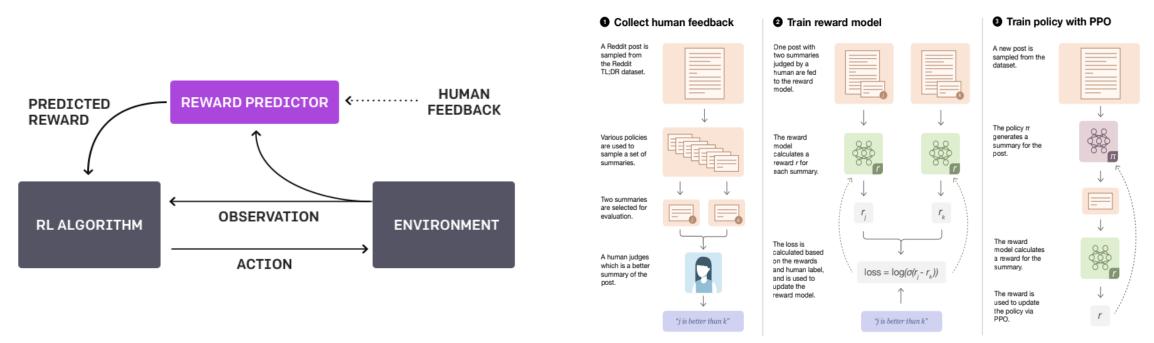


Figure 2: Diagram of our human feedback, reward model training, and policy training procedure.

Christiano, Paul F., et al. "Deep reinforcement learning from human preferences." 2017. Stiennon, Nisan, et al. "Learning to summarize with human feedback." *2020.*

Why RLHF?

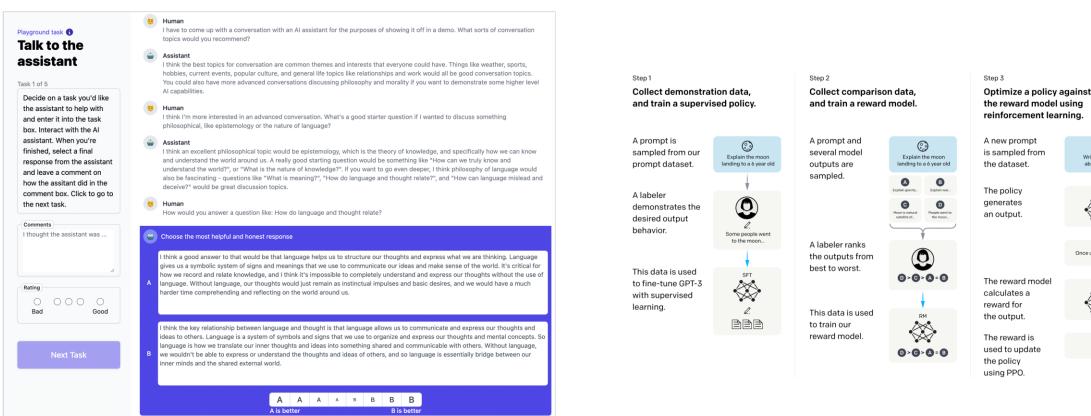
- Takeaway from traditional RL problems
- Objective mismatch

While this strategy has led to markedly improved performance, there is still a misalignment between this fine-tuning objective—maximizing the likelihood of human-written text—and what we care about—generating high-quality outputs as determined by humans. This misalignment has several causes: the maximum likelihood objective has no distinction between important errors (e.g. making up facts [41]) and unimportant errors (e.g. selecting the precise word from a set of synonyms); models

Stiennon, Nisan, et al. "Learning to summarize with human feedback." 2020.

RLHF for alignment

Brought by Anthropic (2021) and OpenAI (2022)



7

Write a story

about frogs

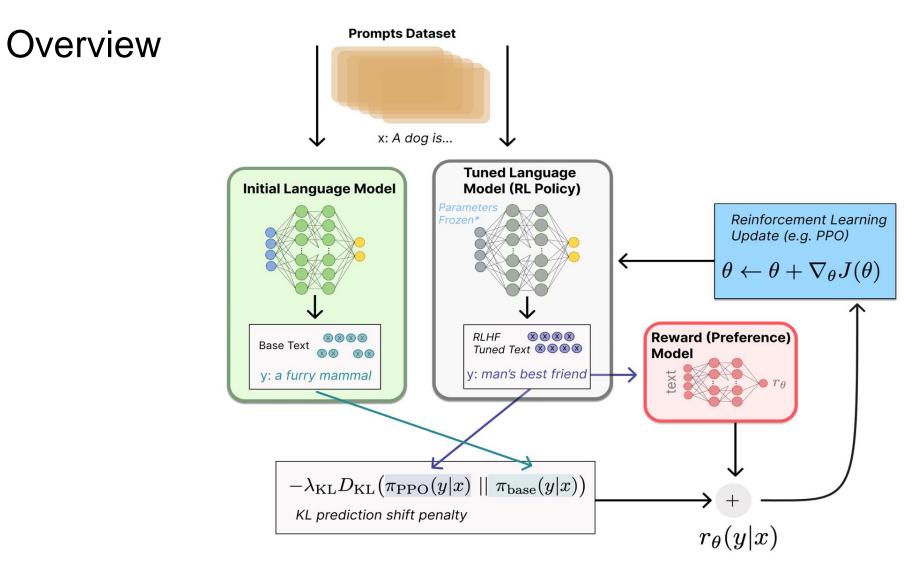
PPO

Once upon a time

DM

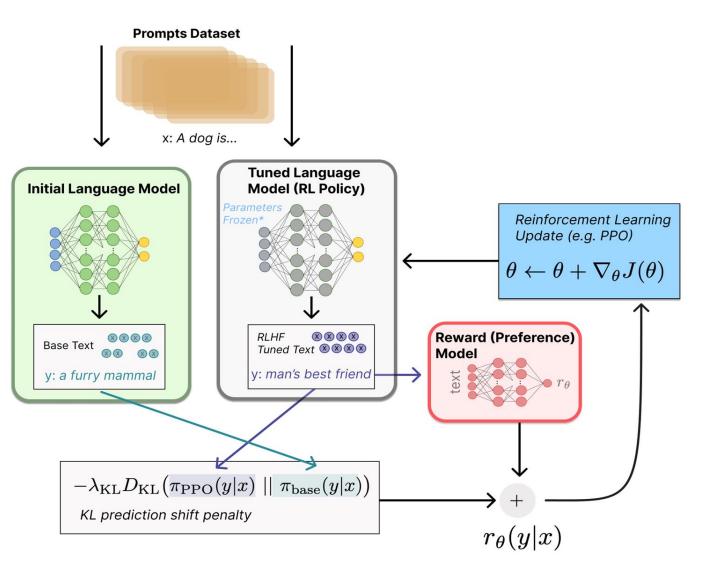
Bai, et al. "Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback." 2021. Ouyang, et al. "Training language models to follow instructions with human feedback." 2020.

L



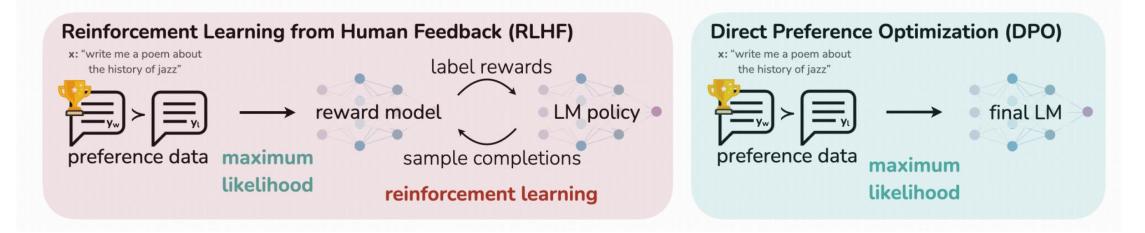
However

- Online RL (PPO) requires huge computational resources
- 4 models, 3~4 times larger
 GPU memory than SFT
- Not friendly to academy and open-source community



Direct Preference Optimization

- The algorithm that makes RLHF accessible
- NeurIPS 2023 outstanding paper



$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$$

UltraFeedback: The dataset that makes DPO **work**!

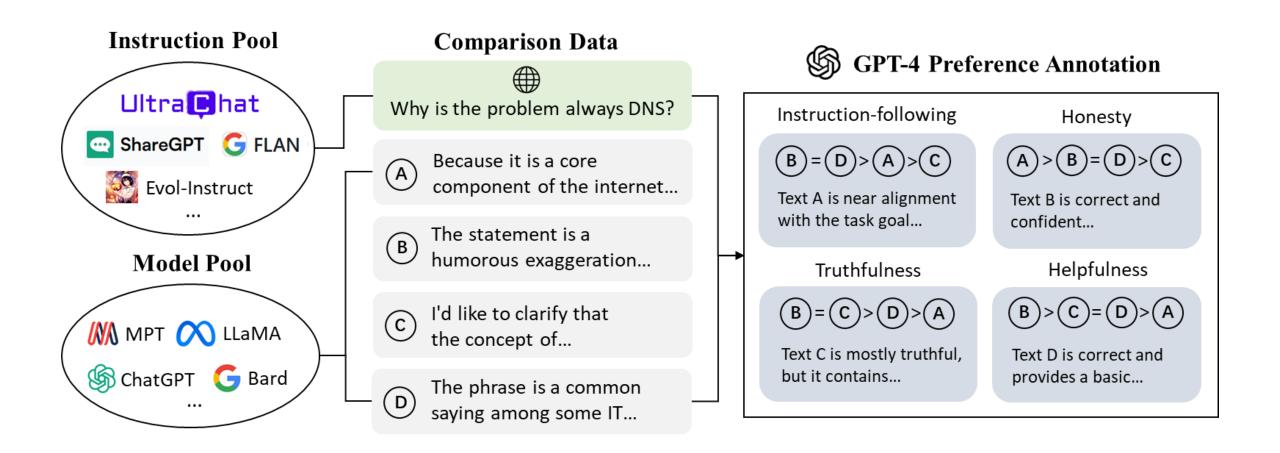
- 2023/05: DPO released, but no proper datasets
- 2023/10: UltraFeedback released, Zephyr came out in 10 days

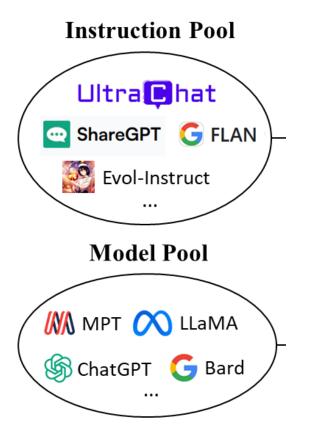
😣 Hugging Face						
Model	Average 1					
garage_bAInd/Platypus2-708_instruct 🖹	73.13					
upstage/Llama-2-79b-instruct-v2 🖹	72.95					
psmathur/model_007 🖻	72.72					
psmathur/orca_mini_v3_70b 🖹	72.64					
ebartford/Samantha_1.11-70b 🖻	72.61					
MayaPH/Godzilla2.708	72.59					
psmathur/model_007_v2 .	72.49					
chargoddard/MelangeA.70b	72.43					
ehartford/Samantha.1.1.70b 🖻	72.42					
psmathur/model_009 📑	72.36					
upstage/Llama-2-70b-instruct 🖹	72.29					
chargoddard/MelangeB-70b	72.14					

2023/08, no RLHF models on Open LLM Leaderboard

Now, almost all top models are DPO models

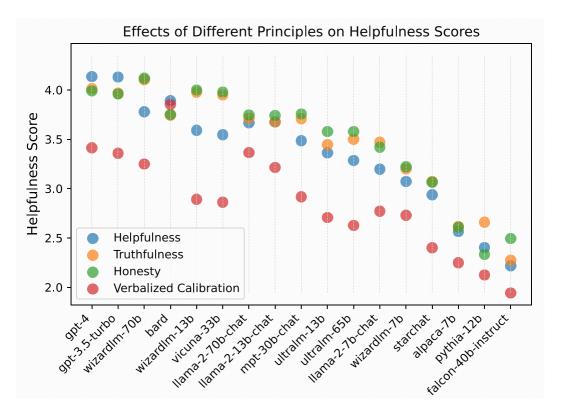
Construction process





Diversity is the key!

- Select diverse and high-quality instructions, reflect different requirements to chat models
- Select distinct model families for response diversity
- We also handwrite several principles to steer model behaviors



Diversity is the key!

- Select diverse and high-quality instructions, reflect different requirements to chat models
- Select distinct model families for response diversity
- We also handwrite several principles to steer model behaviors

Annotation

- Divide and conquer, with 4 aspects
- Detailed annotation doc

	Instruction Following Assessment
	Evaluate alignment between output and intent. Assess understanding of task goals and restrictions.
Description -	Instruction Components: Task Goal (intended outcome), Restrictions (text styles, formats, or
Description	designated
	methods, etc.).
	Scoring : Rate outputs 1 to 5:
	1. Irrelevant: No alignment.
	2. Partial Focus : Addresses one aspect poorly.
Scoring	3. Partial Compliance:
Scoring	• (1) Meets goals or restrictions, neglecting others.
	• (2) Acknowledges both but slight deviations.
	4. Almost There: Near alignment, minor deviations.
	5. Comprehensive Compliance : Fully aligns, meets all requirements.

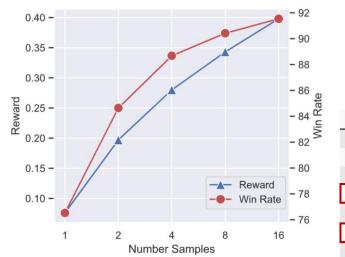
Statistics

• Largest and longest open preference datasets

Table 1. Sta	atistics of ex	kisting pref	erence and cr	ritique datas	ets. The aver	rage length refer	s to the nur	nber of token	S.
Dataset	# Convs	Prompt Length	Response Length	Critique Length	Fine- Grained?	Feedback Format	# Pairs	# Critique	Annotator
				Preference	Dataset				
OASST1	35,905	167.6	221.1	-	×	Scalar	17,966	-	Human
OpenAI WebGPT	38,925	50.9	188.2	-	×	Scalar	19,578	-	Human
Anthropic Helpful	118,263	185.7	94.6	-	×	Ranking	118,263	-	Human
OpenAI Summ.	60,674	326.4	36.6	-	\checkmark	Scalar	92,858	-	Human
QA Feedback	11,378	155.8	107.9	-	\checkmark	Scalar	17,118	-	Human
				Critique I	Dataset				
SelFee	178,331	100.3	243.9	89.4	\checkmark	Text	-	316,026	AI
Shepherd	1,316	95.3	97.6	67.2	\checkmark	Text	-	1,317	Human
ULTRAFEEDBACK	255,864	185.1	305.3	143.1	\checkmark	Scalar & Text	340,025	255,864	AI

Experiments

- Reward modeling
- Best-of-N sampling



AlpacaEval 🐞	Leaderboard
tomatic Evaluator for Instructio	on-following Language Mod

An Automatic Evaluator for Instruction-following Language Models Caution: GPT-4 may favor models with longer outputs and/or those that were fine-tuned on GPT-4 outputs

Evaluator: GPT-4 Claude	Filter: Community Verified Minimal
Model Name	Win Rate Length
XwinLM 70b V0.1	95.57% 1775
GPT-4 📄	95.28% 1365
LLaMA2 Chat 70B	92.66% 179
UltraLM 13B V2.0 (best-of-16) 📄	92.30% 1720
XwinLM 13b V0.1 🖹	91.76% 1894
UltraLM 13B (best-of-16) 📄	91.54% 1980
Claude 2	91.36% 1065

Table 2. Reward modeling accuracy (%) results. We compare our UltraRM with baseline open-source reward models. LLaMA2 results are taken from (Touvron et al., 2023b). The highest results are in **bold** and the second highest scores are <u>underlined</u>.

Model	Backbone Model	Open?	Anthropic Helpful	OpenAI WebGPT	OpenAI Summ.	Stanford SHP	Avg.
Moss	LLaMA-7B	\checkmark	61.3	58.1	59.0	54.6	58.3
Ziya	LLaMA-7B	\checkmark	61.4	61.8	60.3	57.0	60.1
OASST	DeBERTa-v3-large	\checkmark	67.6	-	71.8	53.9	-
SteamSHP	FLAN-T5-XL	\checkmark	55.4	62.6	48.4	51.6	54.5
LLaMA2 Helpfulness	LLaMA2-70B	×	72.0	-	75.5	80.0	-
UltraRM-UF	LLaMA2-13B	\checkmark	66.7	65.1	66.8	68.4	66.8
UltraRM-Overall	LLaMA2-13B	\checkmark	<u>71.0</u>	62.0	73.0	73.6	<u>69.9</u>
UltraRM	LLaMA2-13B	\checkmark	<u>71.0</u>	65.2	<u>74.0</u>	73.7	71.0

Experiments

• PPO: Improve 16.8% win rate

Table 3. Head-to-head comparison results on three public benchmarks. The baseline is text-davinci-003 in AlpacaEval and gpt-3.5-turbo in Evol-Instruct and UltraChat. The judge is GPT-4. The highest win rates are in **bold**.

Model	Size	AlpacaEval Win (%)	Evol-Instruct Win / Tie / Lose (%)	UltraChat Win / Tie / Lose (%)	Average Win (%)
ChatGPT	-	89.4	-	-	
			LLaMA2		
Vicuna-13B-v1.5	13B	_	33.0 / 23.9 / 43.1	34.5 / 38.2 / 27.3	
LLaMA2-13B-Chat	13B	81.1	44.1 / 11.9 / 44.0	53.5 / 21.3 / 25.2	59.5
WizardLM-13B-v1.2	13B	89.2	55.5 / 17.4 / 27.1	59.7 / 25.5 / 14.8	68.1
OpenChat-13B-v3.2super	13B	89.5	55.5 / 11.0 / 33.5	58.7 / 26.7 / 14.5	67.9
LLaMA2-70B-Chat	70B	92.7	56.4 / 13.8 / 29.8	54.0 / 28.6 / 17.4	67.7
			LLaMA		
UltraLM-13B	13B	80.7	39.9 / 14.7 / 45.4	38.2 / 34.8 / 27.0	52.9
Vicuna-13B-v1.3	13B	82.1	36.7 / 17.4 / 45.9	41.3 / 33.2 / 25.5	53.4
WizardLM-13B-v1.1	13B	86.3	54.1 / 14.7 / 31.2	56.1 / 26.0 / 17.9	65.5
Vicuna-33B-v1.3	33B	89.0	50.0/17.0/33.0	57.7/25.7/16.6	65.6
UltraLM-13B-PPO	13B	86.3	57.8 / 10.1 / 32.1	64.9 / 15.6 / 19.5	69.7

Agreement with human labelers

- High agreement with human labelers
- Win rates are also close

Table 4. Agreement between judges on 400 samples from ULTRA-FEEDBACK, AlpacaEval, Evol-Instruct, and UltraChat test sets . A-1, A-2, A-3 are three human judges. "Majority" stands for the agreement between each judge and other three judges's majority votes. We include tie votes and the random agreement is 33%.

Judge	A-1	A-2	A-3	Average	Majority
GPT-4	59.2%	60.8%	59.1%	59.7%	68.6%
A-1	-	58.1%	54.7%	57.3%	60.3%
A-2	58.1%	-	55.4%	58.1%	63.3%
A-3	54.7%	55.4%	-	56.4%	62.0%

Table 5. Human evaluation results. We use majority votes from three human judges and compare GPT-4 and human evaluations on the same 266 samples.

Judge	AlpacaEval Win (%)	Evol-Instruct UltraChat Win / Tie / Lose (%)		Avg. Win (%	
GPT-4	83.9	57.1 / 8.8 / 34.1	61.0 / 17.1 / 21.9	67.3	
Human	78.5	68.1 / 17.6 / 14.3	46.3 / 19.5 / 34.1	64.3	

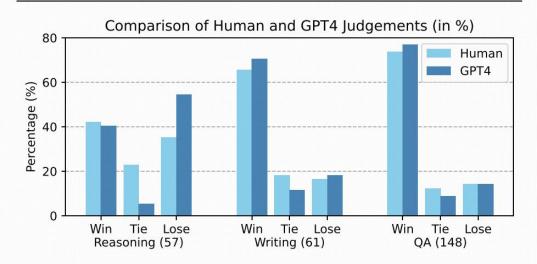
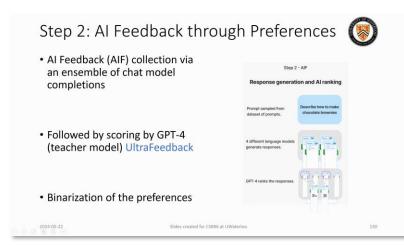


Figure 3. Catrgorical comparison of human and GPT-4 judgments. Human judgments are majority votes from three annotators. Sample numbers of each category are in parentness.

Over **1000** models on HuggingFace are aligned with UltraFeedback rank **#5** among all datasets, **1** million downloads per month

HuggingFace **Zephyr-7B** surpassed LLaMA2-70B-Chat, selected by their official handbook

Used by



UWaterloo CS886

Current directions

- 1. **Data! Data! Data!** We are *severely limited* on experimentation by having too few preference datasets (Anthropic HH, UltraFeedback, and Nectar are main three).
- 2. Continuing to improve DPO: *tons* of papers iterating on the method (<u>ORPO</u>, <u>cDPO</u>, <u>IPO</u>, <u>BCO</u>, <u>KTO</u>, <u>DNO</u>, <u>sDPO</u>, etc)
- 3. **More model sizes**: Most alignment research happened at 7 or 13B parameter scale. Expand up and down!
- 4. **Specific evaluations**: How do we get more specific evaluations than ChatBotArena?
- 5. **Personalization**: A large motivation behind local models, young area academically

I cover these topics regularly on my blog www.interconnects.ai

Aligning open language models | Lambert: 75

Stanford CS25/CS329H

Evaluating Reward Models

Accuracy of predicting human preferences. Preference Datasets Reward Models Table 2: Reward modeling accuracy (%) results. We compare our UltraRM with baseline open-source reward models. LLaMA2 results are taken from Touvron et al. (2023b). The highest result are in bold and the second highest scores are <u>underlined.</u> Model Backbone Model Open? Arthropic OpenAL Stanford Avg. Ziya LLaMA-7B / 61.3 54.6 58.1 54.6 57.2 QASST DeBERTA-3Jage / 62.6 57.2 12.1 53.9 15.1

67.6 55.4 72.0 72.1 62.6 55.3 FLAN.TS.XI. 51.6 SteamSHP 75.5 LLaMA2 Helpfulr LLaMA2-70B UltraRM-UF LLaMA2-13H UltraRM-Overa LLaMA2-13H 73.6 69.9 71.0 UltraRM LLaMA2-13 Natural Language Processing - CSE 517 / CSE 447 Alignment of LLMs (Part 1)

UWashington CSE 447/517

Thank You!

THUNLP

2024/06/04