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Problem Setup (noisy derivative-free optimization)

Given:

(Unknown gradient of objective function) (Noisy Oracle) (Approximate Optimum of )𝑓

Existing Approaches
Gradient Estimator Methods: 

Use noisy samples to estimate gradient 
- Nesterov et al. 2017 
- Gasnikov et al. 2023 
- SPSA (Spall 1998) 

Traditional Zeroth-Order Methods 
-
- Nelder-Mead Methods 
- Trust Region Methods 
-

Bayesian Optimization 

- BOHB (Falkner et al 2018) 
- Optuna 

Limitations

-
- Fixed sampling window causes noisy 

estimation of gradient  

- Do not adapt to heterogeneous 
curvature of objective 

-
- Typically, not designed to handle noisy 

functions

-
- Not great scaling with dimension 

(number of parameters) 

- Large dependance on choice of fixed 
sampling window 

, and , find:



Motivation: Heuristic Combinatorial Optimization Algorithms

Typical use-case of our algorithm:  

➢ Parameter tuning for non-convex combinatorial optimization (CO) known 
to be NP-Hard (e.g. MAXCUT, k-SAT, TSP, etc.) 

➢ Other noisy derivative-free optimization with the following key properties 
(common in machine learning) 

Key properties for when to use our algorithm: 

1)     Evaluation the objective function is noisy* 
* e.g. due to random initialization of CO solver and problem instance 

2)     Heterogeneous curvature of objective function in the parameter space 

3)     Intermediate to large number of parameters 

Region of good parameters

θ1

Heterogeneous curvature 
 of the parameter space:

θ2

T
(Fitness)

L1

L2

with L2 << L1

NP-Hard combinatorial optimization 
(e.g. MAXCUT):



Extend Gaussian ball smoothing to include an adaptive sampling window

Nesterov et al 2017* This Work

Gradient estimation of smoothed objective function 
allows for gradient descent of x for a fixed window (μ).

Gradient estimation of smoothed objective function 
allows for gradient descent of both window position (x) 
and window size and shape (L)

<- Smoothed objective ->  
function

<- gradient estimators ->

 
*Nesterov et al., Foundations of Computational Mathematics, 17(2), 527-566., 2017



Dynamic Anisotropic Smoothing on Rosenbrock function
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Smoothed objective 
function

Gaussian 
kernel

True objective 
(unknown)

Kernel smoothing:

SDE’s of DAS:

Shape of smoothing window

Position of smoothing window

Noise in position 
estimation 

can show is minimized when 
shape of smoothing window and 

fitness function are aligned 

Dynamics of DAS in Differential Form



Fixed Points of SDE Dynamics

• The matrix L, which is used as a preconditioner 
for the gradient, converges to approximate 
the Hessian of the objective function. 

At the fixed points:

1) Sampling window position  converges to local optimum of 
smoothed objective:

𝑥

 
2) Sampling window shape  converges to match Hessian:𝐿

Numerical simulation of the convergence of window 
shape to the objective function’s Hessian:

Notes:

• Preconditioning is important when the curvature will be very 
different in different directions (this property is known to be common 
in machine learning)



Asymptotic Convergence

• Scaling with number of samples:

• Scaling with problem dimension*:

➢ Empirically, DAS exhibits the theoretical optimal convergence with number of samples. 

➢ Scaling of residual error with problem dimension depend on the objective function structure



SAT-CAC (Random 3-SAT N=150, α=4) ISING-CAC (SK N=300)

Numerical Results:  
Application to tuning combinatorial optimization solvers

SAT-CAC: Reifenstein et al. AOP, 15(2), 385-441, 2023 Ising-CAC: Leleu et al. PRL 122(4), 040607.2019, 2019



Outlook and Future Directions

• Apply DAS to tune "differential solvers"  
(=recently developed nonlinear coupled ODEs solving CO)

Coherent Ising Machine (CIM): Yamamoto et al. APL, 117(16), 2020 
Chaotic Amplitude Control (CAC): Leleu et al. PRL 122(4), 040607.2019, 2019 
Coherent SAT machines (SAT-CAC): Reifenstein et al. AOP, 15(2), 385-441, 2023

Chaotic amplitude control:

• Generalize to parameter tuning in machine learning when 
the parameter landscape has heterogeneous curvature.



(End here)



Derivative-free Optimization Methods

Bayesian optimization: 
→ Scales poorly with the 
number of parameters

Finite difference methods: 
→ Not robust to noise

Smoothing techniques: 
→ Struggles with 
heterogeneous curvature

Our approach: 
→ Good scaling
→ Robust to noise
→ Adapts to 
heterogeneous curvature

[Reifenstein*, Leleu*, Yamamoto, accepted ICML 2024]



Algorithm Description (Dynamic Anisotropic Smoothing)

We evolve two variables: a d-dimensional vector x corresponding to our current guess of where 
the optimum is, and a matrix L representing the size and shape of the window in which the 
objective function is sampled. L evolves to compensate for the curvature of the objective 
function in the vicinity of x.



When is it best to use DAS?

1. Noisy Objective Function 
2. Heterogeneous Curvature of Objective Function 
3. Medium Size Dimension d = 4-20* 

(*NOTE: Modifications of DAS could be useful for larger dimensions relevant to training of NNs)


