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Problem Setup (noisy derivative-free optimization)

Given: f . Rd — [R,and

(Unknown gradient of objective function) (Noisy Oracle)

A

f(x,8) = f(x)+ ¢ find: argmax, f(x)

(Approximate Optimum of f)

Existing Approaches

Gradient Estimator Methods:

Use noisy samples to estimate gradient

Nesterov et al. 2017
Gasnikov et al. 2023
SPSA (Spall 1998)

Traditional Zeroth-Order Methods

Nelder-Mead Methods
Trust Region Methods

Bayesian Optimization

- BOHB (Falkner et al 2018)
- Optuna

Limitations

Fixed sampling window causes noisy
estimation of gradient

Do not adapt to heterogeneous
curvature of objective

Typically, not designed to handle noisy
functions

- Not great scaling with dimension
(number of parameters)

- Large dependance on choice of fixed
sampling window




Motivation: Heuristic Combinatorial Optimization Algorithms

NP-Hard combinatorial optimization
Typical use-case of our algorithm: (e.g. MAXCUT):

-

> Parameter tuning for non-convex combinatorial optimization (CO) known
to be NP-Hard (e.g. MAXCUT, k-SAT, TSP, etc.)

> Other noisy derivative-free optimization with the following key properties
(common in machine learning)

Key properties for when to use our algorithm: Heterogeneous curvature

of the parameter space:

1) Evaluation the objective function is noisy* A

T . . Region of good parameters
* e.g. due to random initialization of CO solver and problem instance
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3) Intermediate to large number of parameters (Fitness) \

2) Heterogeneous curvature of objective function in the parameter space




Extend Gaussian ball smoothing to include an adaptive sampling window

Nesterov et al 2017*

Jux) = Eu(f (x + pu)).

Vfu() = Eu(f (x + paju)

Gradient estimation of smoothed objective function
allows for gradient descent of x for a fixed window (u).

function

<- gradient estimators ->

This Work

&

Ball Smoothing

<- Smoothed objective ->  h(L,x) = / k(v)f(Lv + x)dv

ML) (1) [on()f (Lo + )

Gradient estimation of smoothed objective function
allows for gradient descent of both window position (x)

and window size and shape (L)

*Nesterov et al., Foundations of Computational Mathematics, 17(2), 527-566., 2017

DAS (this work)
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| mean worst best
DAS (this work) 0.981 0.962 0.994
Gasnikov, w=0.25 0.280 0.000 0.564
SPSA (Spall 1998) 0.304 0.000 0.762
BOHB (Falkner 2018) | 0.586 0.243 0.796

Table 1. Table shows best, worst, and mean fitness achieved by
four algorithms for n. = 10°. The toy function is the modified
Rosenbrock function in 4 dimensions with 3 = 0.5.



SDFE’s of DAS: —

Kernel smoothing: -

Dynamics of DAS in Differential Form

Shape of smoothing window Noise in position
/ estimation
can show is minimized when

dL ah(L gj) shape of smoothing window and
E— LLT —|— )\L —|— L fitness function are aligned
it oL LA

de I Oh(L, x) N

dt Ox e |-

Position of smoothing window
Smoothed objective Gaussian True objective
function kernel (unknown)
h(L,x) / Lv + x)d

_ det(L) / k(L= (2 — ) f(u)du



Fixed Points of SDE Dynamics

At the fixed points:

Numerical simulation of the convergence of window
shape to the objective function’s Hessian:

1) Sampling window position x converges to local optimum of
smoothed objective:

W
o
L

»
w

oy
o
Il

Vih(x,L) = 0.

w
w
1

w
o
L

2) Sampling window shape L converges to match Hessian:
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ratio of eigenvalues A1/A2
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~AMLL");' = h(z,L), | A
Zj 83’; . ax . 0 500 1000 1500 2000 2500
1 .7 number of samples ns
Notes:
e The matrix L, which is used as a preconditioner » Preconditioning is important when the curvature will be very
for the gradient, converges to approximate different in different directions (this property is known to be common

the Hessian of the objective function. in machine learning)
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Asymptotic Convergence
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e Scaling with number of samples:

e = O(n;'2)

e Scaling with problem dimension*:

e = O(d)

> Empirically, DAS exhibits the theoretical optimal convergence with number of samples.

> Scaling of residual error with problem dimension depend on the objective function structure



Numerical Results:
Application to tuning combinatorial optimization solvers

SAT-CAC (Random 3-SAT N=150, a=4)
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Outlook and Future Directions

Chaotic amplitude control:

e Apply DAS to tune "differential solvers"
(=recently developed nonlinear coupled ODEs solving CO) Recurrent

synaptic updates \ \ \
Coherent Ising Machine (CIM): Yamamoto et al. APL, 117(16), 2020 xi(t\+ 1) = x;(¢) + dt ((1 - p)xi(1) + —=x;())° + (2 Z Jij)
Chaotic Amplitude Control (CAC): Leleu et al. PRL 122(4), 040607.2019, 2019 J
Coherent SAT machines (SAT-CAC): Reifenstein et al. AOP, 15(2), 385-441, 2023

Neural network Parameters Graph Convolution

et + 1) = ¢;(t) + dtf(1 — x,(1)?)

e Generalize to parameter tuning in machine learning when
the parameter landscape has heterogeneous curvature.




(End here)



Derivative-free Optimization Methods

____________ \
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Finite difference methods: @ N ? o ! Bayesian optimization:
— B S I L
— Not robust to noise ® . I ® i — Scales poorly with the
I
¢ ¢ : ° _E number of parameters
B SPSA BOHB _J
Smoothing techniques: Our approach:
— Struggles with — — — Good scaling
heterogeneous curvature — Robust to noise
- A
- Ball Smoothing DAS (this work) | — dapts to

heterogeneous curvature

[Reifenstein*, Leleu™, Yamamoto, accepted ICML 2024]



Algorithm Description (Dynamic Anisotropic Smoothing)

Initialize x, L
(Start with o as some rough guess for the parameters and L large.)
fort < Oto7T do

Choose B random values for the random vector v

Sample y; = f (z + Lv;) for each random vector

Using y;, compute the estimates of W ~ hy, and 2" g; 2) 5 hy

Compute AL = LLszL, Ax = LLTizw
Set L + L + AtAL, x + x + AtAz (update window)

end for
return = (Return the putative best parameters)

SV
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We evolve two variables: a d-dimensional vector x corresponding to our current guess of where
the optimum is, and a matrix L representing the size and shape of the window in which the
objective function is sampled. L evolves to compensate for the curvature of the objective
function in the vicinity of x.



When is it best to use DAS?

1. Noisy Objective Function
2. Heterogeneous Curvature of Objective Function

3. Medium Size Dimension d = 4-20*

(*NOTE: Modifications of DAS could be useful for larger dimensions relevant to training of NNs)




