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Why TSLANet?

Traditional models, e.g., Transformers, struggle with

Interactive Convolutional Block

capturing both long-range and local patterns effectively. P * Integrates multiple convolutional layers that interact to
* Transformer-based models for time series excel in eor allni SR pe ~N refine feature extraction.
capturing long-range dependencies. However, they are: Linear 'Ta)’er | Conv 1D GELU * The parallel convolutions have different kernel sizes to
* parameter-heavy, 1 capture local features and longer-range dependencies.
* computationally intensive, Interactwe (®—| ConviD * The output of each convolution in the first layer
* prune to overfitting on small datasets, Convolutional modulates the feature extraction of the other.
* 1nefficient with noisy data or in learning local patterns. °C -------
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What is TSLANet: N t Adaptive Masking Local Weights
* Anovel Time Series Lightweight Adaptive Network that Adaptive Spectral P11 | BT E O 1 . * Utilizes Fourier-domain processing to enhance feature
combines the strengths of spectral analysis and CNN in a Block _ r i representation by focusing on relevant frequency
unified framework. - tN ~ [ - & - components.
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* A computationally efficient model that learns both long- S : } N * Two sets of learnable filters; a global filter and a local
and short-term relationships within the data. “ g g g e _ é filter.
* A flexible and scalable model that can be utilized across Patch + Positional o A * Adaptive Removal of High-Frequency Noise: adaptive
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different time series tasks. Embeddmgs N\ & local filter to dynamically adjust the level of filtering
0 * We leverage Fourier transform alongside global and e L AN according to the dataset characteristics.
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g local filters to cover wider frequency spectrum, while "‘1”" il " ”J“/‘” / i” ’
= adaptively removing noise.
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