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Given a point 𝒙𝑡

Online Anomaly Detection

.

. 𝒙𝒕



. . .
. ..

.

x

t

.
..

..
.. ..

.
...

.
..

..
.
. ..

.
...

.

x

x

..

Given a point 𝒙𝑡, identify whether it 
comes from Φ0  or Φ1 , under the 
assumption that anomalies are “few” 
and “different”.
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Requirements:
• store in memory only a subset 

𝒙𝑡−𝜔, … , 𝒙𝑡 at each time instant 𝒕.
• classification time of 𝒙𝑡 must be as 

small as possible.
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, by learning the new 
sample 𝒙𝑡, and forgetting the old 
sample 𝒙𝑡−𝜔.

Solution idea



…

t

𝑇1

𝑇2

𝑇𝜏 …

…

…

…

…

…

ℱ𝑡

𝒙𝑡

2) Compute anomaly score 𝑠𝑡 for 𝒙𝑡 as 
a function of the average depth 
𝐸 𝒟𝑡  of all the leaves where 
𝒙𝑡 falls in each tree:
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𝑁

ℎ
𝑙1 𝑟1

𝑙2

𝑟2

ℛ
𝑁

Each node 𝑁 is characterized as 𝑁 = (ℎ, ℛ), 
where:
• ℎ is the number of points that crossed it, 

that is the bin height,

• ℛ =×𝑖=1
𝑑 𝑙𝑖 , 𝑟𝑖  is the minimal bounding 

box that encloses them, that is the 
support of the bin.
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, the heights 
ℎ and supports ℛ are updated.
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If the leaf height ℎ reaches the 

maximum value ෠ℎ = 𝜂2𝑘
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, we split 
the corresponding bin, leading to 
a tree expansion.

ℎ𝑙 ℎ𝑟

ℛ𝑟

ℛ𝑙



Learning procedure

ℎ



Learning procedure

ℎ

1. Randomly sample ℎ points 𝒙 ∼ 𝒰ℛ,

. ... .. . ..
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2. Randomly sample a dimension 𝑞 ∼
𝒰 1,…,𝑑  and split value 𝑝 ∼ 𝒰 𝑙𝑞,𝑟𝑞

,
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Learning procedure

3. Initialize heights ℎ𝑙 , ℎ𝑟  and 
supports ℛ𝑙 , ℛ𝑟  of left and right 
child nodes 𝑁𝑙 and 𝑁𝑟.

. ... .. . ..
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ℎ𝑙

Bin heights ℎ are decreased along the 
path of 𝒙𝑡−𝜔.
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If the sum of two child nodes heights 

ℎ𝑙 + ℎ𝑟  drops below the value ෠ℎ, we 
merge the corresponding bins, leading 
to a tree contraction.
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1. Set parent height ℎ as the sum of ℎ𝑙 
and ℎ𝑟,

Forgetting procedure
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2. Set parent support ℛ  as the 
hyperrectangle enclosing ℛ𝑙 and ℛ𝑟,

Forgetting procedure
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3. Forget split information 𝑝, 𝑞  and 
child nodes 𝑁𝑙 , 𝑁𝑟.

Forgetting procedure
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Conclusions

Online Isolation Forest is a truly online anomaly detection 
algorithm that tracks the data generating process as it evolves 
over time.

Experimental validation demonstrated that Online Isolation Forest:
• is on par with state-of-the art techniques in terms of 

effectiveness,
• consistently outperforms all competitors in terms of 

efficiency.
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