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Given a point x;, identify whether it
X comes from &, or &,, under the
assumption that anomalies are “few”

and “different’.
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’ anomalies

Requirements:
e store In memory only a subset
, ..., X at each time instant ¢.
e classification time of x, must be as
small as possible.
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2) Compute anomaly score s; for x; as
a function of the average depth

E(D,) of all the leaves where
——————— - x; falls in each tree:
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Build an ensemble F of trees that
continuously expand and
contract their structure at each
time instant ¢, by learning the new
sample x;, and forgetting the old
sample

Compute anomaly score s; for x; as
a function of the average depth
E(D;) of all the leaves where

x;  falls in each tree:
E(D¢)
St — 2 C((Uﬂ?)
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i i 1) Build an ensemble F of trees that
l l continuously expand and
' 1 contract their structure at each
1 : time instant ¢, by learning the new
] 1 sample x;, and forgetting the old
T sample
’ 2) Compute anomaly score s, for x; as
a function of the average depth
E(D;) of all the leaves where
R d x, falls in each tree:

g EEE - - -y,

t E(Dt)
St — 2 C((Uﬂ?)
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Online Isolation Tree is a d-dimensional
histogram built by recursively splitting
the input space R¢.
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Online Isolation Tree is a d-dimensional
histogram built by recursively splitting
the input space R¢.
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Each node N 1s characterized as N = (h, R),

" ws N wherg: . .
R * his the number of points that crossed it,
l ’ that is the bin height,
: , o+ R =x%.[l;r] is the minimal bounding
l4 g} box that encloses them, that is the

support of the bin.
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x;, the heights
h and supports R are updated.
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/ At each new point x,, the heights
h and supports R are updated.

If the leat height h reaches the

maximum value h = n2*
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e , we split
Ry the corresponding bin, leading to

________________________________________________________________

R, a tree expansion.
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1. Randomly sample h points x ~ U,
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1. Randomly sample h points x ~ U+,
2. Randomly sample a dimension g ~
Uy, .4y and split value p ~ u[lq

f'"q] ’
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I 3. Initialize heights , h, and
B S supports R;, R, of left and right
I child nodes N, and N,
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Bin heights
path of

are decreased along the
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If the sum of two child nodes heights

+ h, drops below the value h, we
merge the corresponding bins, leading
to a tree contraction.
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‘ ‘ If the sum of two child nodes heights

e + h,. drops below the value h, we
merge the corresponding bins, leading
‘ ‘ to a tree contraction.

h; + h,
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If the sum of two child nodes heights

e + h,. drops below the value h, we
"""""""""""""""""""" ’ merge the corresponding bins, leading
to a tree contraction.
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1. Set parent height h as the sum of
and h..,



Forgetting procedure __

2. Set parent support R as the
S i L hyperrectangle enclosing ®; and R,
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3. Forget split information p,q and
R child nodes N, N,..




Experimental results A

DATASET n d % OF ANOMALIES

DONORS 619326 10 5.90
HTTP 067497 3 0.40
FORESTCOVER 286048 10 0.90
FRAUD 284807 29 0.17
MULCROSS 262144 4 10.00
SMTP 95156 3 0.03
SHUTTLE 49097 9 7.00
MAMMOGRAPHY 11183 § 2.00
8
§
§

NYC_TAXI_SHINGLE 10273 4 5.20
ANNTHYROID 6832 ) 7.00
SATELLITE 6435 3 32.00

References . Liu, F. T., Ting, K. M., and Zhou, Z.-H. “Isolation-based anomaly detection”. TKDD 2012. -+ Tan, S. C., Ting, K. M., and Liu, T. F. “Fast anomaly detection for streaming data”. JCAI 2011. ° Pevny, T. “Loda: Lightweight on-line detector of anomalies”. Machine Learning 2016.
» Ding, Z. and Fei, M. “An anomaly detection approach based on isolation forest algorithm < Guha, S., Mishra, N., Roy, G., and Schrijvers, O. “Robust random cut forest based anomaly
for streaming data using sliding window”. IFAC 2013. detection on streams”. ICML 2016.



Experimental results A

AUC (1) TIME ()
OIFOR ASDIFOR HST RRCF LODA OIFOR AsSDIFOR HST RRCF LODA
DONORS 0.795 0.769 0.715 0.637 0.554 252.36 HHl1.85 2145.85 4924.46 2111.09
HrTP 0.998 0.999 0.992 0996 0.632 179.36 509.40 2016.00 &8367.16 2017.85
FORESTCOVER (0.887 0.861 0.722 0.917 0.500 107.65 197.82 1045.39 2997.86 1009.92
FRAUD 0.936 0.946 0.910 0.951 0.722 100.09 285.69 973.91 4936.03 931.93
MULCROSS 0.995 0.952 0.011 0.800  0.506 90.33 270.79  936.01 3244.96  R848.12
SMTP 0.861 0.905 0.851 0.894 0.731 29.95 142.65  325.77 1273.98 254.69
SHUTTLE 0.992 0.996 0.981 0.957 0.528 16.35 108.28  167.48 770.61 130.61
MAMMOGRAPHY ).854 0.855 0.831 0.824 0.622 3.32 &0.01 37.92 118.22 29.50
NYC_TAXI_SHINGLE 0.572 0.709 0.342 0.725 0.499 8.03 83.15 36.70  151.67 36.82
ANNTHYROID 0.685 0.810 0.636 0.740  0.589 2.00 77.06 24.26 03.40 19.79
SATELLITE 0.651 0.709 0.531 0.662 0.501 3.74 78.90 21.78 93.77 17.55
MEDIAN 0.866 0.863 0.739 0.832 0.541 29.95 142.57 323.29 1274.45  254.64
MEAN RANK 2.167 1.583 3.917 2500 4.833 1.000 2.607 3.000 5.000 2.833
cD cD
—
5 4 3 2 1
LODA —— _‘- asdIFOR RRCF — T — plFOR
H5T olFOR H5T asdIFOR
RRLCF LODA

* Guha, S., Mishra, N., Roy, G., and Schrijvers, O. “Robust random cut forest based anomaly
detection on streams”. ICML 2016.

 Liu, F. T., Ting, K. M., and Zhou, Z.-H. “Isolation-based anomaly detection”. TKDD 2012.
« Ding, Z. and Fei, M. “An anomaly detection approach based on isolation forest algorithm
for streaming data using sliding window”. IFAC 2013.
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Conclusions

Online Isolation Forest is a truly online anomaly detection

algorithm that tracks the data generating process as it evolves
over time.

Experimental validation demonstrated that Online Isolation Forest:

 1s on par with state-of-the art techniques in terms of
effectiveness,

e consistently outperforms all competitors In terms of
efficiency.
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