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Background

▶ In reinforcement learning (RL), off-policy evaluation (OPE) is an important topic that focuses on estimating the expected total reward of a target policy
based on data collected from a potentially different and unknown policy.

▶ Among various algorithms for OPE, fitted Q-evaluation (FQE) is arguably one of the most popular algorithms.

▶ FQE has demonstrated significant empirical success in many applications, the theoretical analysis of FQE is less explored in current literature.

▶ We delve deeply into the analysis of FQE estimators within the framework of a finite-horizon, time-inhomogeneous Markov Decision Process (MDP).

Set up

▶ Finite-horizon episodic Markov Decision Process (MDP): T is the length of horizon, S is the state space, A is the action space, Prt(· | s, a) representing
the transition kernel (probability) at step t given the state s ∈ S and the action a ∈ A, Rt is the immediate reward at step t.

▶ Given pre-collected training data consist of n independent and identically distributed trajectories Dn =
{{(

Si ,t,Ai ,t,Ri ,t
)}

1≤t<T

}
1≤i≤n

, OPE aims to

estimate the value of π defined as

ν(π) = Eπ

 T∑
t=1

Rt

 .

▶ Define ρπt (s, a) and ρbt (s, a) as the marginal density of (St,At) at (s, a) ∈ S ×A under the target policy π and behavior policy πb respectively. Define
the probability ratio function wπ

t and Q-function as

wπ
t (s, a) = ρπt (s, a)/ρ

b
t (s, a), Qπ

t (s, a) = Eπ

 T∑
t ′=t

Rt | St = s,At = a

 .

▶ FQE: Recursively apply a regression technique to learn Qπ
T ,Q

π
T−1, . . . ,Q

π
1 in a sequential and backward order. Let Q̂π

T+1 = 0, and for
t = T ,T − 1, . . . , 1, one can compute

Q̂π
t = arg min

Q∈Q(t)

1

n

n∑
i=1

{
Q(Si ,t,Ai ,t)−

[
Ri ,t +

∑
a′∈At+1

πt(a | Si ,t+1)Q̂π
t+1(Si ,t+1, a

′)
]}2

and ν̂(π) =
∫
(s,a)∈S×A Q̂π

1 (s, a)ρ
π
1 (s, a)d(s, a).

▶ One can let Q(t) = {ϕK (·)⊺β : β ∈ RK |A|}, where ϕK are pre-specified features. We consider two scenarios:

1. K is fixed → parametric setting.
2. K is growing with n (and T ) → nonparametric setting.

Three key questions

1. For the fixed horizon T , how does the convergence rate depend on the number of episodes n given the completeness assumption for Q-functions? Is the
optimal convergence rate (n−1/2) still achievable under nonparametric models of Q-functions?

2. How does the convergence rate depend on the growing horizon T ?

3. What is the role of the probability ratio functions wπ
t in improving the convergence rate for FQE estimators?

Comparison on the error bounds
Table 1: Comparison on the error bound for the first-order term in existing works. κ is defined as an overlap constant. κ̃ is the upper bound for the probability ratio functions; D is the
dimension of space and action. d is the intrinsic dimension of the state-action space. Some logarithmic orders are omitted in the error bounds.

Work Parametric? Regularity on Q Error Bound

Yin & Wang (2020)
√

Tabular O(T κ̃
√

1/n)

Duan et al. (2020)
√

Linear O(T 2
√

κ/n)

Zhang et al. (2022)
√

Differentiable O(T 2
√

κ/n)

Nguyen-Tang et al. (2021) × Besov O(T 2−α/(2α+2D)κ̃n−α/(2α+2D))

Ji et al. (2022) × Besov O(T 2κn−α/(2α+d))

Our Work for parametric setting
√

Linear
O(T 1.5

√
κ/n)

O(T κ̃
√

1/n) when wπ
t are linear

Our Work for nonparametric setting × Hölder
O(T 1.5

√
κ/n) when Qπ

t are smooth enough

O(T κ̃
√
1/n) when wπ

t are Hölder

Connection with MIS estimators

▶ MIS estimator under the tabular setting is shown to have an error bound that has a linear dependence on the horizon (Yin & Wang (2020)).

▶ There is an equivalence between the FQE estimator and MIS estimator when adopting linear modeling of Q-functions (Duan et al. (2020)).

▶ Is linear dependence on the horizon for more general linear modeling (with potentially continuous state space) achievable for FQE estimators?

Parametric setting

Define (Pπ
t f )(s, a) = E

{∑
a′ πt(a

′ | St+1)f (St+1, a′) | St = s,At = a
}
, κ := 1

T

∑T
t=1 supf ∈Q(t) [Eπt f ]2/∥f ∥2L2

.

▶ Assumption 1: E{Rt | St = ·,At = ·} ∈ Q(t), for t = 1, . . . ,T . For every q ∈ Q(t+1), we have Pπ
t q ∈ Q(t).

▶ Theorem 1: Q(t) =
{
ϕK (·, ·)⊺β : β ∈ RK |A|

}
for some pre-specified feature ϕK and K is a fixed constant, under Assumption 1 and some technical

conditions, if T = O([n/(log n logT )]1/2), we have

|ν̂(π)− ν(π)| = Op

(√
T 3κ

n
+ T 3 log n logT

n

)
.

▶ Compared with the bound in Duan et al. (2020), our first order term has an order of T 1.5/
√
n. We achieve a sharper horizon dependence by exploiting

the fact that the variance of the first order term can be decomposed as a sum of T individual expectations of the conditional variance.

▶ Assumption 2: wπ
t ∈

{
ϕK (·, ·)⊺β : β ∈ RK |A|

}
, t = 1, . . . ,T .

▶ Theorem 2: Under conditions listed in Theorem 1, if we futher assume Assumption 2, we have

|ν̂(π)− ν(π)| = Op

(
T

√
κ

n
+ T 3 log n logT

n

)
.

▶ Theorem 2 shows that with an additional realizability assumption (Assumption 2) on the probability ratio functions, the convergence rate of the error will
depend linearly with respect to the horizon T in the first-order term. This is a significant improvement in horizon dependence over the existing literature
on the setting of using linear function approximation.

Nonparametric setting: a slower rate

Define the projection Πt such that Πtg(s, a) = ϕK (s, a)
⊺(Σt)

−1E [ϕK (St,At)g(St,At)].

▶ Assumption 3: For every a ∈ A and t = 1, . . . ,T , {q(·, a) : q ∈ Q(t), ∥q∥∞ ≤ 1} is a subset of Hölder space Λ∞(p, L) with constants p > d/2 and
L > 0.

▶ Assumption 4: There exists a constant βQ > 1/2 (independent of T ) such that sup
q∈Q(t)(1)

∥q − Πtq∥∞ ≲ K−βQ for t = 1, . . . ,T .

▶ Theorem 3: Under Assumption 1, 3, 4 and some technical conditions, if we further assume that K = O(min{
√
n/(log n logT ), n/(T 2 log n logT )}),

T = O(KβQ), then we have

|ν̂(π)− ν(π)| = Op

(
T 2K−βQ +

√
T 3κ

n
+

T 3K log n logT

n

)
.

▶ Corollary 1: Under conditions listed in Theorem 3, we further assume that T is bounded.

(i) If 1/2 < βQ ≤ 1, then by taking K ≍
√
n/(log n logT ), we have

|ν̂(π)− ν(π)| =Op

(
n−βQ/2 log n

)
.

(ii) If βQ > 1, then by taking K ≍ (n/(log n))1/(1+βQ), we have

|ν̂(π)− ν(π)| = Op

(
n−1/2

)
.

▶ When βQ is large enough, i.e., Q functions are smooth enough, we can achieve the optimal convergence rate n−1/2.

▶ When 1/2 < βQ ≤ 1, by choosing K appropriately, our bound is faster than the optimal convergence rate n−βQ/(1+2βQ) for nonparametrically
estimating the Q-functions

Nonparametric setting: a faster rate with realizability on ratio function

▶ Assumption 5: There exists a constant βw > 1/2 such that supt ∥wπ
t − Πtw

π
t ∥∞ ≲ K−βw for t = 1, . . . ,T .

▶ Theorem 4: Under conditions listed in Theorem 3, we futher assume Assumption 5, we have

|ν̂(π)− ν(π)| = O

(
T√
n
+ T 2K−βQ−βw + T 3K−2βQ + T 3K−βQ

√
K log n logT

n
+

T 3K log n logT

n

)
.

▶ Corollary 2: Under conditions listed in Theorem 4, we further assume βQ = βw = β > 1/2, T logT = O
(
(n/log n)β/(1+2β)

)
, by taking the optimal

order of K such that

K ≍ {n/(log n logT )}
1

1+2β ,

we have |ν̂(π)− ν(π)| = 
Op

(
T√
n

)
, if T = O

(
n

2β−1
4(1+2β)(log n)

−β
1+2β

)
,

Op

(
T 3
(

n
log n logT

) −2β
1+2β

)
, otherwise.

▶ If the number of horizon T is bounded, we can achieve the optimal convergence rate (n−1/2) for |ν̂(π)− ν(π)| even though we estimate Q functions
nonparametricly. Compared to Corollary 1, we do not require βQ > 1 to achieve such optimal convergence rate.

▶ In the scenario where T grows relatively slowly compared to n (case 1), the convergence exhibits a n−1/2 dependence with respect to n, with a linear
dependence on the horizon. To the best of our knowledge, this convergence rate aligns with the best-known rate for FQE in tabular settings Yin & Wang
(2020) (necessarily parametric), despite our analysis is conducted under a much more challenging nonparametric setting.


