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Background

» In reinforcement learning (RL), off-policy evaluation (OPE) is an important topic that focuses on estimating the expected total reward of a target policy
based on data collected from a potentially different and unknown policy.

» Among various algorithms for OPE, fitted Q-evaluation (FQE) is arguably one of the most popular algorithms.
» FQE has demonstrated significant empirical success in many applications, the theoretical analysis of FQE is less explored in current literature.
» We delve deeply into the analysis of FQE estimators within the framework of a finite-horizon, time-inhomogeneous Markov Decision Process (MDP).

Set up

» Finite-horizon episodic Markov Decision Process (MDP): T is the length of horizon, § is the state space, A is the action space, Pr¢(- | s, a) representing
the transition kernel (probability) at step t given the state s € S and the action a € A, R; is the immediate reward at step t.

- OPE aims to

» Given pre-collected training data consist of n independent and identically distributed trajectories D, = {{(5,-7“ Ajt, R,-)t) }1<t<7—}1<,<
— ~NIss\n

estimate the value of 7 defined as

-
v(m) =E" | ) Ri|.
t=1

> Define p7(s, a) and p2(s, a) as the marginal density of (S¢, At) at (s,a) € S x A under the target policy m and behavior policy 7 respectively. Define
the probability ratio function w{" and Q-function as

-
WZ“T(Sv a) — :07tr(57 a)/pf(s, a)? Q?(Sv a) =E" Z Rt ‘ St=s,Ar=a

t'=t
> FQE: Recursively apply a regression technique to learn QF, @T_4,..., @] in a sequential and backward order. Let @7{-“ = 0, and for
t=1T,T —1,...,1, one can compute
1 o ;
sz = arg min —Z{Q(Si,nAi,t) - [Ri,t + Z Tt(a | 5i,t+1)©t7f+1(5i,t+17 3,)] }
QEQ(t) & =1 QIEAH_]_

and D(m) = f(s,a)eSxA CA){T(S, a)p7(s,a)d(s, a).
> One can let Q1) = {¢, ()73 : B € REIAIY where ¢y are pre-specified features. We consider two scenarios:

1. K is fixed — parametric setting.
2. K is growing with n (and T) — nonparametric setting.

Three key questions

1. For the fixed horizon T, how does the convergence rate depend on the number of episodes n given the completeness assumption for Q-functions? |s the
optimal convergence rate (n_1/2) still achievable under nonparametric models of Q-functions?

2. How does the convergence rate depend on the growing horizon T7
3. What is the role of the probability ratio functions w{" in improving the convergence rate for FQE estimators?

Comparison on the error bounds

Table 1: Comparison on the error bound for the first-order term in existing works. k is defined as an overlap constant. % is the upper bound for the probability ratio functions; D is the
dimension of space and action. d is the intrinsic dimension of the state-action space. Some logarithmic orders are omitted in the error bounds.

WORK PARAMETRIC? REGULARITY ON @ ERROR BOUND

YIN & WANG (2020) v TABULAR O(T&+/1/n)

DUAN ET AL. (2020) v LINEAR O(T?\/k/n)

ZHANG ET AL. (2022) vV DIFFERENTIABLE O(T?\/k/n)
NGUYEN-TANG ET AL. (2021) X BESOV O(T2/(20+2D) . p—a/(20-+2D))
J1 ET AL. (2022) X BESOV O( T2~/ (20+d))

Our Work FOR PARAMETRIC SETTING vV LINEAR O(T">\/ri/n)

O(TR+/1/n) WHEN w{ ARE LINEAR

O(TY\/k/n) WHEN QF ARE SMOOTH ENOUGH

Our Work FOR NONPARAMETRIC SETTING X HOLDER .
O(TR+/1/n) WHEN w{ ARE HOLDER

Connection with MIS estimators

» MIS estimator under the tabular setting is shown to have an error bound that has a linear dependence on the horizon (Yin & Wang (2020)).
» There is an equivalence between the FQE estimator and MIS estimator when adopting linear modeling of Q-functions (Duan et al. (2020)).

» s linear dependence on the horizon for more general linear modeling (with potentially continuous state space) achievable for FQE estimators?

Parametric setting

Define (P]f)(s,a) = E{> mt(d | Se41)f(St11.3) | St =5, Ar = a}, k= % Zthl SUP /£ o(¢) [5?f]2/||f\|2£2.
» Assumption 1: E{R; | S; = At =} € Ot) fort=1.....T. For every q € O(t+1) we have Plq e o).
» Theorem 1: Q(t) = {QbK(‘a VBB € ]RK|A|} for some pre-specified feature ¢, and K is a fixed constant, under Assumption 1 and some technical
conditions, if T = o([n/(log nlog 7-)]1/2)’ we have

3
D(r) — v(7)] = Oy (V% § 738 ”I'fg T) .

» Compared with the bound in Duan et al. (2020), our first order term has an order of T1°/,/n. We achieve a sharper horizon dependence by exploiting
the fact that the variance of the first order term can be decomposed as a sum of T individual expectations of the conditional variance.

» Assumption 2: w{ & {¢K(o, NTB: 6 € RK|A|}, t=1,...,T.

» Theorem 2: Under conditions listed in Theorem 1, if we futher assume Assumption 2, we have

() — ()| = O, (T\/é £ TIOENE T) |

» Theorem 2 shows that with an additional realizability assumption (Assumption 2) on the probability ratio functions, the convergence rate of the error will
depend linearly with respect to the horizon T in the first-order term. This is a significant improvement in horizon dependence over the existing literature
on the setting of using linear function approximation.

Nonparametric setting: a slower rate

Define the projection MM; such that M:g(s, a) = ¢k (s, a)T(X:) 'E [dx(St, Ar)g(St, At)].
» Assumption 3: Foreveryac Aandt=1,...,T,{q(-,a):q € o(t), |g|loo < 1} is a subset of Holder space Aoo(p, L) with constants p > d/2 and
L>0.

» Assumption 4: There exists a constant g > 1/2 (independent of T) such that SUP ¢ o(t)(1) g — MNeqlloo S KPfort=1....T

Y

» Theorem 3: Under Assumption 1, 3, 4 and some technical conditions, if we further assume that K = o(min{+/n/(log nlog T), n/(T?log nlog T)}),
T = o(K"PQ), then we have

n n

T3 T3Klognlog T
|ﬁ(w)y(w)|op<72K5@+ by o8 1% )

» Corollary 1: Under conditions listed in Theorem 3, we further assume that T is bounded.
(i) If 1/2 < B < 1, then by taking K =< y/n/(log nlog T), we have
D(m) — v(m)| =Op (n_ﬁQ/2 log n) .
(ii) If Bg > 1, then by taking K < (n/(log n))l/(1+5Q), we have
() = v(m)] = Op(n 2.

» When BQ s large enough, i.e., @ functions are smooth enough, we can achieve the optimal convergence rate n—1/2

» When 1/2 < 8o < 1, by choosing K appropriately, our bound is faster than the optimal convergence rate n—BQ/(1+28q) for nonparametrically
estimating the @-functions

Nonparametric setting: a faster rate with realizability on ratio function

<K Pwore=1,... T.

Y

» Assumption 5: There exists a constant 3,, > 1/2 such that sup; ||w{ — M:w] ||
» Theorem 4: Under conditions listed in Theorem 3, we futher assume Assumption 5, we have

T Klognlog T T3Klognlog T
D(m) — v(m)| = 0<7 + T?K=PQ=Pw o T3K=20q 4 T3K50\/ e e 08 ) .
n n n

» Corollary 2: Under conditions listed in Theorem 4, we further assume 8o = 8w =8 >1/2, Tlog T = 0 ((n/log n)ﬁ/(Hzﬁ)), by taking the optimal
order of K such that

1
K =< {n/(lognlog T)}1+25

we have |P(7m) — v(7)| =

( 261 —f
Op (\%) df T =o0 <n4(1+25)(|og n)1+25> 7

3 14273 .

Op (T (Iog n'I’Og T) ) , otherwise.

\

» If the number of horizon T is bounded, we can achieve the optimal convergence rate (n~1/2) for |(7r) — v/()| even though we estimate Q functions
nonparametricly. Compared to Corollary 1, we do not require S > 1 to achieve such optimal convergence rate.

/s

» In the scenario where T grows relatively slowly compared to n (case 1), the convergence exhibits a n—1/2 dependence with respect to n, with a linear
dependence on the horizon. To the best of our knowledge, this convergence rate aligns with the best-known rate for FQE in tabular settings Yin & Wang
(2020) (necessarily parametric), despite our analysis is conducted under a much more challenging nonparametric setting.




