

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks

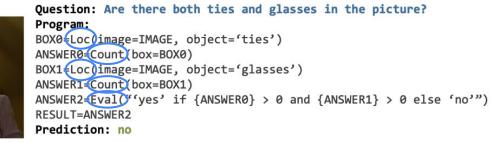
Zhiruo Wang¹ **Graham Neubig**¹ **Daniel Fried**¹

What are tools?

Application-specific software

Real-world APIs

Expert-designed functions


Mmm pizza -- good idea! Do you know a good pizza place in Princeton, NJ?

Recommended APIs

APIs curated by RapidAPI and recommended based on functionality offered, performance, and support!

Text Translator	API-BASKETBALL	Local Business Data	MoviesDatabase
Translate text to 100+ languages . Fast processing, cost saving. Free up to 100,000 characters per month	+400 Basketball Leagues & Cups with Livescore, Odds, Bookmakers, Statistics, Standings, Historical Data,	Extremely Comprehensive Local Business / Place Data from Google Maps - Reviews, Photos, Emails,	MoviesDatabase provides complete and updated data for over 9 million titles (movies, series and episodes) and 11 million
⊉ 9.9 ③ 887 ms ∨ 100%	vermed v ≥ 9.9 ⊙ 308 ms ∨ 100%	≥ 9.9 © 1,223 ms ∨ 100%	⊎ 9.9 © 736 ms ∨ 99%

IMAGE:

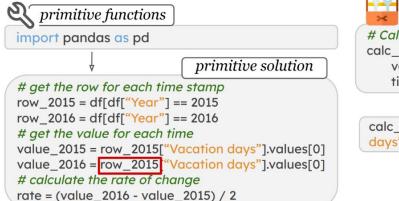
search: princeton pizza

View All

Can we make tools to improve task performance?

• On programmatic tasks, yes!

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks


build-in functions \rightarrow tools external libraries \rightarrow tools expert-crafted functions \rightarrow tools O: The bakers baked 200 loaves of bread Q: The table shows how many... What is the Q: Who is wearing the dress? How many loaves of bread did they have left? max number of vacation days across years? Year 2013 2014 2015 The bakers started with 200 loaves. They sold 93 in the morning ... The answer is 62. LM Vacation days 23 18 11 dress_box = locate_objects(image, "dress") import pandas as pd loaves_baked, loaves_returned = 200, 6 df = pd.DataFrame({"Year": [2013, 2014, 2015], dress_region = crop_region(image, dress_box) sold_morning, sold_afternoon = 93, 39 "Vacation days": [23, 18, 11]}) answer = visual_ga(dress_region, answer = loaves_baked - loaves_sold_morning max_days = df["Vacation days"].max() question="Who is wearing the dress?") loaves_sold_afternoon + loaves_returned CodeLM CodeLM CodeLM

Why tool making helps?

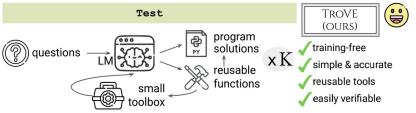
The table shows how many days of vacation Austin had taken each year. What was the rate of change between 2015 and 2016?

*advanced functions # Calculate the rate of change in values*calc_rate_of_change(df: pd.DataFrame, value_column: str, time_column: str, time1: any, time2: any) -> float *d dvanced solution*

calc_rate_of_change(df, "Vacation days", "Year", 2015, 2016)

Primitive Solution

- Tedious, complex
- Error-prone
- Hard to verify


With tools:

- Concise
- Accurate
- Easy to verify

Existing methods are not very efficient...

Test PRIMITIVE X tedious, complex program ඳ questions solutions × prone to error Train Test EXISTING **METHODS** large : questions ((? questions toolbox X need extra training X complex pipeline XIX LM X irreusable tools function program program ę, දී solutions solutions Ours

Adds a ton of computation cost

Tools may not be reusable

The table shows how many days of vacation Austin had taken each year. What was the rate of change between 2015 and 2016?

def calc_rate(df, time1: int, time2: int):
 # get the row for each time stamp
 row1 = df[df["Year"] == time1
 row2 = df[df["Year"] == time2
 # get the value for each time
 value1 = row1["Vacation days"].values[0]
 value2 = row2["Vacation days"].values[0]
 # calculate the rate of change
 rate = (value2 - value1) / 1
 return rate

(a) new question

The table shows how many words Peter learnt each day What was the rate of change between Jan 1st and Feb 2nd?

How do TroVE make tools?

Pipeline

How do TroVE make tools?

- Using and growing the toolbox
- Agreement-based selection
- Periodic toolbox trimming

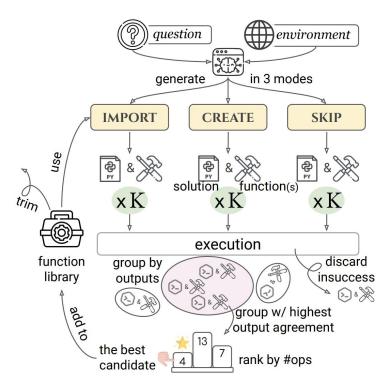


Figure 5. TROVE illustration. Top: generate solutions while using and growing the toolbox. Bottom: select the best response by execution agreement. Left: periodically trim low-utility functions.

Testbed: Dataset & Metrics

Task	ask Dataset		Primitive Functions
	algebra	881	
	count & prob.	291	
	geometry	metry 237	
MATH	inter. algebra	503	built-in functions
	number theory	497	
	prealgebra	636	
	precalculus	156	
	TabMWP	5,376	+ pandas
TABLEQA	WTQ	4,344	+ pandas
	HiTab	1,574	+pandas +parse_table
VISUALQA	GQA	12,578	+ PIL.Image + locate_objects + visual_qa + crop_region

Table 1. Statistics and primitives for three tasks.

Evaluation Metrics

- Answer correctness (acc ↑)
- Solution complexity (#ops ↓)
- Toolbox size (#lib \downarrow)

CodeLLaMa: Better Performance with Tools

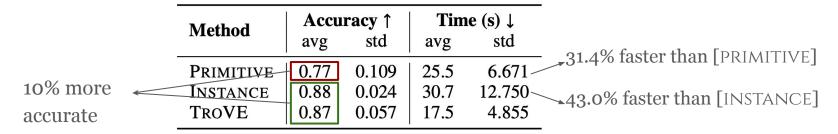
Method Metric			MATH				TABLEQA			VISUAL		
	Metric	alg	count	geo	inte	num	prealg	precal	TabMWP	WTQ	HiTab	GQA
	acc ↑	0.15	0.14	0.06	0.05	0.16	0.21	0.10	0.43	0.20	0.09	0.37
Primitive	# ops ↓	15.4	10.9	15.1	17.0	12.3	12.1	20.8	17.4	24.3	16.5	24.8
	#lib ↓				—							
	acc ↑	0.22	0.23	0.07	0.06	0.23	0.26	0.17	0.36	0.17	0.12	0.16
INSTANCE	# ops ↓	18.4	10.2	26.8	28.2	14.3	10.6	26.9	8.3	8.4	14.1	18.8
	#lib ↓	39	7	36	82	5	16	36	3,175	537	31	395
	acc ↑	0.25	0.26	0.08	0.11	0.25	0.29	0.17	0.47	0.21	0.18	0.44
TROVE	# ops ↓	18.8	10.0	25.4	23.9	11.2	11.7	19.6	10.9	9.2	9.3	20.3
	#lib ↓	10	1	7	8	8	4	7	10	11	5	7

Table 2. CODELLAMA-7B-INSTRUCT results on MATH, TABLEQA, and VISUAL tasks.

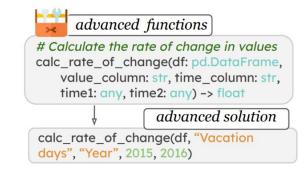
GPT4: better than existing methods

Method	MATH acc ↑	I _{algebra} # lib↓	Tab Macc ↑		(QA # lib↓
	acc	# IID ↓	acc	# IID ↓	acc ↑	# 110 ↓
w/ additio	nal supe	rvision				
LATM	0.30	-	0.09	-	0.29	-
CRAFT	0.68	282	0.88	181	0.45	525
w/ additio	nal rectij	fication & it	eration			
Creator	0.65	875	0.81	4,595	0.34	-
w/o super	vision, re	ctification, o	or iteration	ı		
TROVE	0.72	16	0.92	38	0.44	8

Table 3. Comparing with existing methods using GPT-4. We adopt the baseline results as reported in Yuan et al. (2023). We do not report the *complexity* metric since none of these methods report it (our results in Table 2).


But no better than CodeLLaMa-7B?

Model	Method	Evaluation Metrics			
Wouei	Methou	acc ↑	# ops ↓	# lib ↓	
CodeLLaMa	Primitive	0.37	24.6	-	
	TroVE	0.44	20.3	7	
GPT-4	Primitive	0.40	27.4	-	
	TroVE	0.44	20.2	8	


Table 4. 7B CODELLAMA2 and GPT-4 perform comparably on the GQA task without training advantage.

Training advantage on primitive functions!

Human Verification: faster, more accurate

Table 5. Human accuracy and time in verifying model-produced solutions with three methods experimented.

Diverse Tools Across Domains

Varied function types across tasks

Task	Example Functions
	from sympy import solve
MATH	def calculate_remainder(numbers, modulus): product = 1 for number in numbers: product *= number return produce % modulus
ΓableQA	<pre>def get_match_after_condition(df, condition_column: str, condition: any, value_column: str) -> any: """""Get the match that comes after the match that satisfies a condition in the specified column.""" row = df[df[condition_column] == condition] index = row.index[0] + 1 if index < len(df): return df.iloc[index][value_column] else: return None</pre>
VISUALQA	from PIL import Image from toolbox import crop_region, locate_objects def get_object_region(

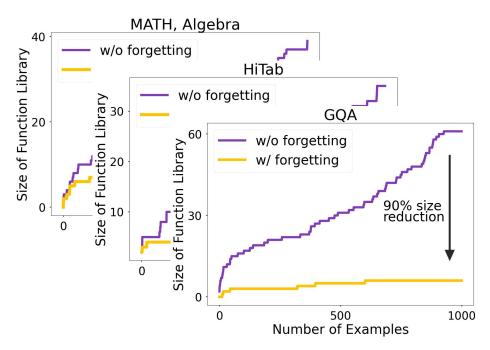
Varied functionalities across datasets

TabMWP

calculate_rate_of_change find_range find_difference find_median sum_values find_mode calc_total_cost WTO pandac HiTC

count_by_condition get_next_match get_value_by_condition ge get data cell

parse_table ····


Ablation Studies

• Robustness to example ordering

Method / Value	Evaluation Metrics						
	acc ↑	# ops ↓	# lib ↓				
$\mathrm{MATH}_{algebra}$							
original	0.25	18.8	10				
value range std.dev.	0.23-0.24 0.000	17.3–19.0 0.879	5–9 1.924				
HiTab							
original	0.18	9.3	5				
value range std.dev.	0.17-0.18 0.003	9.0–9.9 0.358	8–10 0.837				
GQA							
original	0.43	20.6	6				
value range std.dev.	0.43-0.44	20.4–20.6 0.150	6–8 0.957				

Table 7. CODELLAMA results with alternative orders.

• Necessity of periodic toolbox trimming

Recap: TroVE

- Make tools for programmatic tasks
- Get more accurate, concise solutions
- Facilitates human verification
- Naturally adaptive to various tasks/domains

Thank You!