

What are tools?

Application-specific software

Real-world APIs

Expert-designed functions

Can we make tools to improve task performance?

● On programmatic tasks, yes!

Why tool making helps?

Primitive Solution

● Tedious, complex
● Error-prone
● Hard to verify

With tools:

● Concise
● Accurate
● Easy to verify

Existing methods are not very efficient…

Adds a ton of computation cost Tools may not be reusable

def calc_rate(df, time1: int, time2: int):
 # get the row for each time stamp
 row1 = df[df[“Year”] == time1
 row2 = df[df[“Year”] == time2
 # get the value for each time
 value1 = row1[“Vacation days”].values[0]
 value2 = row2[“Vacation days”].values[0]
 # calculate the rate of change
 rate = (value2 - value1) / 1
 return rate

The table shows how many days of vacation
Austin had taken each year. What was the
rate of change between 2015 and 2016?

question

The table shows how many words Peter
learnt each day What was the rate of change
between Jan 1st and Feb 2nd?

new question

★ Ours

How do TroVE make tools?

How do TroVE make tools?

● Using and growing the toolbox

● Agreement-based selection

● Periodic toolbox trimming

Testbed: Dataset & Metrics

Evaluation Metrics

● Answer correctness (acc ↑)

● Solution complexity (#ops ↓)

● Toolbox size (#lib ↓)

CodeLLaMa: Better Performance with Tools

GPT4: better than existing methods

But no better than CodeLLaMa-7B?

Training advantage on primitive functions!

Human Verification: faster, more accurate

10% more
accurate

31.4% faster than [primitive]

43.0% faster than [instance]

Diverse Tools Across Domains

Varied function types across tasks Varied functionalities across datasets

Ablation Studies

● Robustness to example ordering ● Necessity of periodic toolbox trimming

Recap: TroVE

● Make tools for programmatic tasks
● Get more accurate, concise solutions
● Facilitates human verification
● Naturally adaptive to various tasks/domains

Thank You!

