

Optimal Batched Linear Bandits

Xuanfei Ren*, Tianyuan Jin[†], Pan Xu[§]

*University of Science and Technology of China [†]National University of Singapore [§]Duke University

The Forty-first International Conference on Machine Learning

◆□ > ◆□ > ◆ □ > ● □ > ◆ □ > ◆ □ > ● □ >

- 2 Research Goal
- **3** Algorithm and Analysis

- 2 Research Goal
- **3** Algorithm and Analysis

Optimal Batched Linear Bandits

This is a fully sequential decision problem!

ъ

Batch mode The player commits to a sequence of actions (*a batch of actions*) and observes the rewards *after all actions in that sequence are played*.

A single decision, batch size = 3

< 5

Batched linear bandits

Notations:

- T time horizon
- \mathcal{X} a fixed set of K actions
- ▶ θ^* an unknown parameter
- ► Rewards: $y_t = \langle x_t, \theta^* \rangle + \varepsilon_t$
- ► Regret: $R_T = E[\max_{x \in X} \sum_{t=1}^T \langle x x_t, \theta^* \rangle]$
- Batch complexity: number of batches

Our goal is to design batched algorithms that achieve optimal regret and batch complexity in different senses.

Asymptotic lower bound For an allocation $\alpha \in \mathbb{R}_{\geq 0}^k$ over actions we define the associated covariance matrix $H(\alpha) = \sum_{x \in X} \alpha(x) x x^T$. Let c^* be the solution to the following convex program,

$$\boldsymbol{c}^{*}(\boldsymbol{\theta}^{*}) \stackrel{\Delta}{=} \inf_{\boldsymbol{\alpha} \in \mathbb{R}^{k}_{\geq 0}} \sum_{\boldsymbol{x} \in \boldsymbol{X}} \boldsymbol{\alpha}(\boldsymbol{x}) \Delta(\boldsymbol{x}) \quad \text{s.t.} \quad \|\boldsymbol{x}\|_{\boldsymbol{H}^{-1}(\boldsymbol{\alpha})}^{2} \leq \frac{\Delta^{2}_{\boldsymbol{x}}}{2}, \forall \boldsymbol{x} \in \boldsymbol{\mathcal{X}}^{-} := \boldsymbol{\mathcal{X}} - \{\boldsymbol{x}^{*}\}, \quad (1)$$

In paper *The End of Optimism* [LS17], it is stated that any consistent algorithm π for the linear bandit setting with has regret $R_T(\theta^*, \pi)$ at least

$$\liminf_{T\to\infty}\frac{R_T(\theta^*,\pi)}{\log(T)}\geq c^*(\theta^*).$$

2 Research Goal

3 Algorithm and Analysis

Non-asymptotic

- minimax optimal regret, best instance-dependent regret bound
- batch complexity that matches existing lower bound, instance-dependent batch complexity

Non-asymptotic

- minimax optimal regret, best instance-dependent regret bound
- batch complexity that matches existing lower bound, instance-dependent batch complexity
- Asymptotic $T \to \infty$
 - asymptotically optimal regret
 - asymptotically optimal batch complexity

Non-asymptotic

- minimax optimal regret, best instance-dependent regret bound
- batch complexity that matches existing lower bound, instance-dependent batch complexity
- Asymptotic $T
 ightarrow \infty$
 - asymptotically optimal regret
 - asymptotically optimal batch complexity
- The first algorithm for linear bandits that simultaneously achieves the minimax and asymptotic optimality in regret with the corresponding optimal batch complexities!

Algorithm	Non-asyn	nptotic setting	Asymptotic setting		
	Worst-case regret	Batch complexity	Asymptotic regret	Batch complexity	
[AYPS11]	$\tilde{O}(d\sqrt{T})$	$O(\log T)$	-	-	
[EKMM21]	$\tilde{O}(\sqrt{dT})$	$O(\log T)$	-	-	
[RYZ21]	$\tilde{O}(\sqrt{dT})$	$O(\log \log T)$	-	-	
[HYF23]	$\tilde{O}(\sqrt{dT})$	$O(\log \log T)$	-	-	
Lower bound [GHRZ19]	$\Omega(\sqrt{dT})$	$\Omega(\log \log T)$	-	-	
[LS17]	-	-	Optimal	Sequential	
OSSB [CMP17]	-	-	Optimal	Sequential	
OAM [HLS20]	-	-	Optimal	Sequential	
SOLID [TPRL20]	$\tilde{O}((d + \log K)\sqrt{T})$	Sequential	Optimal	Sequential	
IDS [KLVS21]	$\tilde{O}(d\sqrt{T})$	$\geq \textit{O}ig(\textit{d}^4 \log^4 \textit{T} / \Delta_{\min}^2ig)$	Optimal	$\geq \mathit{O}ig(\log^4 \mathit{T}ig)$	
Batch lower bound	-	-	Optimal	3	
${\sf E}^4({\sf Our}\;{\sf Algorithm})$	$\tilde{O}(\sqrt{dT})$	$O(\log \log T)$	Optimal	3	

Optimal Batched Linear Bandits

1 E 5

- 2 Research Goal
- 3 Algorithm and Analysis
 Design Theoretical Analysis Empirical Results

2 Research Goal

3 Algorithm and Analysis ■ Design ■ Theoretical Analysis ■ Empirical Results

Algorithm Framework: E^4

Problem Setup Research Goal Algorithm and Analysis

; 参考文献

Optimal Batched Linear Bandits Xuanfei Ren 14,

For any $\Delta\in[0,\infty)^k$ define $\textit{w}(\Delta)\in[0,\infty]^k$ to be a solution to the optimisation problem

$$\begin{split} \min_{\boldsymbol{w} \in [0,\infty]^k} \sum_{\boldsymbol{x} \in \mathcal{X}} w_{\boldsymbol{x}} \Delta(\boldsymbol{x}) \\ \text{s.t.} \quad \|\boldsymbol{x}\|_{H_{\mathbf{w}}^{-1}}^2 \leq \frac{\Delta_{\boldsymbol{x}}^2}{2}, \forall \boldsymbol{x} \in \mathcal{X}, \end{split}$$

where $H_w = \sum_{x \in \mathcal{X}} w_x x x^T$.

Sampling rule: use estimators to calculate $w(\hat{\Delta})$, then sample according to this proportion.

Chernoff's Stopping Rule (Generalized likelihood ratio test): If we find the best arm with probability at least 1 - 1/T, then stop to commit. Define

$$\begin{split} & Z(t) = \min_{x \neq \hat{x}^*} \frac{\hat{\Delta}_x^2}{2 \| \hat{x}^* - x \|_{H_t^{-1}}^2} \\ & \tau = \inf \bigg\{ t \in \mathbb{N}^* : Z(t) \geq \beta(\delta, t) \text{ and } \sum_{s=1}^t x_t x_t^T \geq c I_d \bigg\}, \end{split}$$

where τ is a stopping time. Choosing proper threshold β to make $\mathbb{P}(\tau < \infty, \theta^* {}^{\mathcal{T}}(x^* - \hat{x}^*_{\tau}) > 0) \leq \delta$.

Definition D-optimal design sampling allocation is given by:

$$\min_{\pi} \max_{\mathbf{x} \in \mathcal{X}} \|\mathbf{x}\|_{\mathcal{H}_{\pi}^{-1}}^{2}, \quad \mathcal{H}_{\pi} = \sum_{\mathbf{x} \in \mathcal{X}} \pi_{\mathbf{x}} \cdot \mathbf{x} \mathbf{x}^{\top}.$$

Pulling arms according to this special design leads to good concentration results like:

$$|\langle \hat{ heta} - heta^*, x
angle| \leq \sqrt{d \log(1/\delta) / \mathcal{T}_{arepsilon}}, \quad orall x \in \mathcal{X}$$

where the total pulling number is $\Theta(T_{\varepsilon})$.

Algorithm Design

The performance of our algorithm in each batch:

- 1. Exploration: D-optimal design; Estimation: calculate sampling proportion w
- Exploration: D-optimal design and according to the proportion;
 Estimation: calculate stopping statistics Z;
 Elimination: stopping rule
- 3. Exploration: D-optimal design; Elimination:

$$\mathcal{A} = \left\{ \mathbf{x} \in \mathcal{A} : \max_{\mathbf{y} \in \mathcal{A}} \langle \hat{\theta}, \mathbf{y} - \mathbf{x} \rangle \le 2\varepsilon_{\ell} \right\}$$

- 4. Repeat step 3 until $|\mathcal{A}| = 1$ or t = T
- 5. Exploitation: Commit to the estimated best arm

Algorithm design

Algorithm 1 Explore, Estimate, Eliminate, and Exploit (E⁴) **Input:** arm set \mathcal{X} , horizon T, parameters $\alpha, \delta, \gamma, \{T_1, T_2, \ldots\}, \{\varepsilon_1, \varepsilon_2, \ldots\}$ Initialization: $\ell = 1, t = 0, A = X$ 1: while t < T and $|\mathcal{A}| > 1$ do Exploration: 2: Find a multi-set in \mathcal{A} according to the D-optimal design in Definition 4.5 with $\Theta(T_{\ell})$ arms in total Pull arms in the D-optimal design multi-set 3: if $\ell = 2$ then 4: pull each arm $x \in \mathcal{A}$ for another min $\{w_x \cdot \alpha \log T, (\log T)^{1+\gamma}\}$ times 5: end if 6. Let b_{ℓ} be the total pulling number in the current batch 7: Estimation: 8: Update least squares estimators $\hat{\theta}, \hat{x}^*, \hat{\Delta}$ and calculate

 $\begin{cases} w(\hat{\Delta}) \text{ according to Definition 4.1} & \text{if } \ell = 1\\ Z(b_2) \text{ according to } (4.2) & \text{if } \ell = 2 \end{cases}$

9: Elimination:

Update the active action set according to

$$\begin{cases} \mathcal{A} = \{\hat{x}^*\} \text{ if stopping rule (4.4) holds } & \text{if } \ell = 2\\ \mathcal{A} = \left\{ x \in \mathcal{A} : \max_{y \in \mathcal{A}} \langle \hat{\theta}, y - x \rangle \leq 2\varepsilon_\ell \right\} & \text{if } \ell = 3, 4, \dots \end{cases}$$

10: $\ell = \ell + 1, t = t + b_{\ell}$ 11: end while 12: Exploitation: pull arm $x \in \mathcal{A}$ for T - t times

Problem Setup

1 1 1

Xuanfei Ren 19/33

2 Research Goal

3 Algorithm and Analysis ■ Design ■ Theoretical Analysis ■ Empirical Results

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Define

$$\mathcal{T}_1 = \{ T_1 = (\log T)^{1/2}, T_2 = (\log T)^{1/2}, T_3 = (\log T)^{1+\gamma}, T_\ell = T^{1-\frac{1}{2\ell-3}}, \ell \geq 4 \}.$$

• When $\{T_\ell\}_{\ell=1}^{\infty} = \mathcal{T}_1$, our algorithm achieves

 $\textit{Regret}(\textit{T}) \leq \tilde{\textit{O}}(\sqrt{\textit{dT}}),$

with at most $O(\log \log T)$ batches.

Define

$$\mathcal{T}_2 = \{ T_1 = (\log T)^{1/2}, T_2 = (\log T)^{1/2}, T_3 = (\log T)^{1+\gamma}, T_\ell = d\log(kT^2) \cdot 2^{\ell-3}, \ell \ge 4 \}.$$

• When $\{T_{\ell}\}_{\ell=1}^{\infty} = \mathcal{T}_2$, our algorithm achieves $\tilde{O}(\sqrt{dT})$ regret and

Algorithm and Analysis

$$Regret(T) \le O\left((\log T)^{1+\gamma} + \frac{d\log(KT)}{\Delta_{\min}}\right) = \tilde{O}\left(\frac{d}{\Delta_{\min}}\right),$$

with at most $\textit{O}(\log \textit{T})$ batches and in expectation $\textit{O}(\log(1/\Delta_{\min}))$ batches.

▶ In the asymptotic setting, when $T \to \infty$, our algorithm with $\{T_\ell\}_{\ell=1}^{\infty}$ equaling \mathcal{T}_1 or \mathcal{T}_2 achieves asymptotic optimality defined above, i.e.,

$$\limsup_{T\to\infty}\frac{\operatorname{Regret}(T)}{\log(T)}\leq c^*,$$

with 3 batches in expectation.

We prove:

Theorem (Batch complexity lower bound) If an algorithm achieves asymptotic optimality, then on all bandit instances, it must have at least 3 batches in expectation as $T \rightarrow \infty$.

The batch complexity of our algorithm matches this lower bound!

2 Research Goal

3 Algorithm and Analysis ■ Design ■ Theoretical Analysis ■ Empirical Results

"End of Optimism" instance.

Optimal Batched Linear Bandits Xuanfei Ren 26/33

ъ

Regret and Batch Analysis: "End of Optimism" instances (d = 2, K = 3).

Algorithm and Analysis

Optimal Batched Linear Bandits Xuanfei Ren 27/33

4 D > 4 B

Instance		E^4	PhaElimD	rs-OFUL	EndOA	IDS	
d = 2 K = 3 T = 10000	$\epsilon = 0.01$	3.0 ± 0.0	4.0 ± 0.0	36.1 ± 0.3	-	-	
u = 2, N = 5, T = 10000	$\epsilon = 0.2$	3.0 ± 0.0	4.0 ± 0.0	37.0 ± 0.0	-	-	
d = 3, K = 5, T = 50000	$\epsilon = 0.01$	3.0 ± 0.0	4.0 ± 0.0	61.0 ± 0.5	-	-	
	$\epsilon = 0.2$	3.0 ± 0.0	4.0 ± 0.0	60.5 ± 0.8	-	-	
d = 5, K = 9, T = 100000	$\epsilon = 0.01$	3.0 ± 0.0	4.0 ± 0.0	102.3 ± 0.9	-	-	
	$\epsilon = 0.2$	3.0 ± 0.0	4.0 ± 0.0	101.8 ± 0.6	-	-	

Batch Complexity Analysis: "End of Optimism" instances. Note that batch complexity of sequential algorithms like **EndOA** and **IDS** equals time horizon.

4 E b

- A - B - B

-

Instance		\mathbf{E}^4	PhaElimD	rs-OFUL	EndOA	IDS
d = 2, K = 3, T = 10000	$\begin{aligned} \epsilon &= 0.01\\ \epsilon &= 0.2 \end{aligned}$	$\begin{array}{c} 0.04 \\ 0.06 \end{array}$	$\begin{array}{c} 0.18 \\ 0.15 \end{array}$	$\begin{array}{c} 0.45 \\ 0.28 \end{array}$	$3.15 \\ 2.23$	$9.48 \\ 6.42$
d = 3, K = 5, T = 50000	$\begin{aligned} \epsilon &= 0.01\\ \epsilon &= 0.2 \end{aligned}$	$\begin{array}{c} 0.12 \\ 0.15 \end{array}$	$\begin{array}{c} 0.71 \\ 0.76 \end{array}$	$\begin{array}{c} 1.47 \\ 1.60 \end{array}$	$3.17 \\ 3.87$	$30.22 \\ 13.86$
d = 5, K = 9, T = 100000	$\begin{aligned} \epsilon &= 0.01 \\ \epsilon &= 0.2 \end{aligned}$	$\begin{array}{c} 0.25 \\ 0.33 \end{array}$	$\begin{array}{c} 1.46 \\ 1.40 \end{array}$	$3.72 \\ 2.90$	$\begin{array}{c} 8.94 \\ 10.19 \end{array}$	$178.31 \\ 246.53$

Runtime comparison (Unit: second per experiment).

Thank you!

Problem Setup 🛛 Research Goal 🔹 Algorithm and Analysis 🛛 💈

Optimal Batched Linear Bandits Xuanfei Ren 30,

ъ

1 D > 4 B

- [AYPS11] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits. *Advances in neural information processing systems*, 24, 2011.
- [CMP17] Richard Combes, Stefan Magureanu, and Alexandre Proutiere. Minimal exploration in structured stochastic bandits. *Advances in Neural Information Processing Systems*, 30, 2017.
- [EKMM21] Hossein Esfandiari, Amin Karbasi, Abbas Mehrabian, and Vahab Mirrokni. Regret bounds for batched bandits. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pages 7340–7348, 2021.
- [GHRZ19] Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched multi-armed bandits problem. *Advances in Neural Information Processing Systems*, 32, 2019.

- [HLS20] Botao Hao, Tor Lattimore, and Csaba Szepesvari. Adaptive exploration in linear contextual bandit. In International Conference on Artificial Intelligence and Statistics, pages 3536–3545. PMLR, 2020.
- [HYF23] Osama A Hanna, Lin Yang, and Christina Fragouli. Contexts can be cheap: Solving stochastic contextual bandits with linear bandit algorithms. In Gergely Neu and Lorenzo Rosasco, editors, *Proceedings of Thirty Sixth Conference on Learning Theory*, volume 195 of *Proceedings of Machine Learning Research*, pages 1791–1821. PMLR, 12–15 Jul 2023.
- [KLVS21] Johannes Kirschner, Tor Lattimore, Claire Vernade, and Csaba Szepesvári. Asymptotically optimal information-directed sampling. In *Conference on Learning Theory*, pages 2777–2821. PMLR, 2021.
 - [LS17] Tor Lattimore and Csaba Szepesvari. The end of optimism? an asymptotic analysis of finite-armed linear bandits. In *Artificial Intelligence and Statistics*, pages 728–737. PMLR, 2017.

A 5 5 4 5

- [RYZ21] Yufei Ruan, Jiaqi Yang, and Yuan Zhou. Linear bandits with limited adaptivity and learning distributional optimal design. In *Proceedings of the* 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 74–87, 2021.
- [TPRL20] Andrea Tirinzoni, Matteo Pirotta, Marcello Restelli, and Alessandro Lazaric. An asymptotically optimal primal-dual incremental algorithm for contextual linear bandits. *Advances in Neural Information Processing Systems*, 33:1417–1427, 2020.