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Bandit Problem

This is a fully sequential decision problem!
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Batch Mode

Batch mode The player commits to a sequence of actions (a batch of actions) and
observes the rewards after all actions in that sequence are played.
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Problem Setting

Batched linear bandits
Notations:
▶ T time horizon
▶ X a fixed set of K actions
▶ θ∗ an unknown parameter
▶ Rewards: yt = ⟨xt, θ∗⟩+ εt
▶ Regret: RT = E[maxx∈X ΣT

t=1⟨x − xt, θ∗⟩]
▶ Batch complexity: number of batches

Our goal is to design batched algorithms that achieve optimal regret and batch
complexity in different senses.
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Existing Lower Bound

Asymptotic lower bound For an allocation α ∈ Rk
≥0 over actions we define the

associated covariance matrix H(α) =
∑

x∈X α(x)xxT. Let c∗ be the solution to the
following convex program,

c∗(θ∗) ∆
= inf

α∈Rk
≥0

∑
x∈X

α(x)∆(x) s.t. ∥x∥2H−1(α) ≤
∆2

x
2
, ∀x ∈ X− := X − {x∗}, (1)

In paper The End of Optimism [LS17], it is stated that any consistent algorithm π for
the linear bandit setting with has regret RT(θ∗, π) at least

lim inf
T→∞

RT(θ∗, π)

log(T) ≥ c∗(θ∗).
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Our Goal

Non-asymptotic
▶ minimax optimal regret, best instance-dependent regret bound
▶ batch complexity that matches existing lower bound, instance-dependent batch

complexity

Asymptotic T → ∞
▶ asymptotically optimal regret
▶ asymptotically optimal batch complexity

The first algorithm for linear bandits that simultaneously achieves the minimax and
asymptotic optimality in regret with the corresponding optimal batch complexities!
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Related Work Comparison

Algorithm Non-asymptotic setting Asymptotic setting

Worst-case regret Batch complexity Asymptotic regret Batch complexity

[AYPS11] Õ(d
√

T) O(log T) - -
[EKMM21] Õ(

√
dT) O(log T) - -

[RYZ21] Õ(
√

dT) O(log log T) - -
[HYF23] Õ(

√
dT) O(log log T) - -

Lower bound [GHRZ19] Ω(
√

dT) Ω(log log T) - -

[LS17] - - Optimal Sequential
OSSB [CMP17] - - Optimal Sequential
OAM [HLS20] - - Optimal Sequential

SOLID [TPRL20] Õ
(
(d + log K)

√
T
)

Sequential Optimal Sequential
IDS [KLVS21] Õ(d

√
T) ≥ O

(
d4 log4 T/∆2

min
)

Optimal ≥ O
(

log4 T
)

Batch lower bound - - Optimal 3

E4(Our Algorithm) Õ(
√

dT) O(log log T) Optimal 3
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Algorithm Framework: E4
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Sampling Rule

For any ∆ ∈ [0,∞)k define w(∆) ∈ [0,∞]k to be a solution to the optimisation
problem

min
w∈[0,∞]k

∑
x∈X

wx∆(x)

s.t. ∥x∥2H−1
w

≤ ∆2
x
2
, ∀x ∈ X ,

where Hw =
∑

x∈X
wxxxT.

Sampling rule: use estimators to calculate w(∆̂), then sample according to this
proportion.
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Stopping Rule

Chernoff’s Stopping Rule (Generalized likelihood ratio test):
If we find the best arm with probability at least 1− 1/T, then stop to commit.
Define

Z(t) = min
x̸=x̂∗

∆̂2
x

2∥x̂∗ − x∥2H−1
t

τ = inf
{

t ∈ N∗ : Z(t) ≥ β(δ, t) and
t∑

s=1

xtxT
t ≥ cId

}
,

where τ is a stopping time.
Choosing proper threshold β to make P

(
τ < ∞, θ∗T(x∗ − x̂∗τ ) > 0

)
≤ δ.
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Uniform Exploration for Linear Bandits: D-Optimal Design

Definition D-optimal design sampling allocation is
given by:

min
π

max
x∈X

∥x∥2H−1
π
, Hπ =

∑
x∈X

πx · xx⊤.

Pulling arms according to this special design leads
to good concentration results like:

|⟨θ̂ − θ∗, x⟩| ≤
√

d log(1/δ)/Tε, ∀x ∈ X

where the total pulling number is Θ(Tε).
(1, 0)

(0, 1)

(1 , 2 )
C1

C2
C3
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Algorithm Design

The performance of our algorithm in each batch:
1. Exploration: D-optimal design;

Estimation: calculate sampling proportion w
2. Exploration: D-optimal design and according to the

proportion;
Estimation: calculate stopping statistics Z;
Elimination: stopping rule

3. Exploration: D-optimal design; Elimination:

A =
{

x ∈ A : max
y∈A

⟨θ̂, y − x⟩ ≤ 2εℓ

}
4. Repeat step 3 until |A| = 1 or t = T
5. Exploitation: Commit to the estimated best arm
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Algorithm design
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Main Results: Regret and Batch Complexity

Define

T1 = {T1 = (log T)1/2,T2 = (log T)1/2,T3 = (log T)1+γ ,Tℓ = T1− 1

2ℓ−3 , ℓ ≥ 4}.

▶ When {Tℓ}∞ℓ=1 = T1, our algorithm achieves

Regret(T) ≤ Õ
(√

dT
)
,

with at most O(log log T) batches.
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Main Results: Regret and Batch Complexity

Define

T2 = {T1 = (log T)1/2,T2 = (log T)1/2,T3 = (log T)1+γ ,Tℓ = d log(kT2) · 2ℓ−3, ℓ ≥ 4}.

▶ When {Tℓ}∞ℓ=1 = T2, our algorithm achieves Õ(
√

dT) regret and

Regret(T) ≤ O
(
(log T)1+γ +

d log(KT)
∆min

)
= Õ

(
d

∆min

)
,

with at most O(log T) batches and in expectation O(log(1/∆min)) batches.
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Asymptotic Results

▶ In the asymptotic setting, when T → ∞, our algorithm with {Tℓ}∞ℓ=1 equaling T1
or T2 achieves asymptotic optimality defined above, i.e.,

lim sup
T→∞

Regret(T)
log(T) ≤ c∗,

with 3 batches in expectation.
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Main Results: Batch Complexity Lower Bound

We prove:
Theorem (Batch complexity lower bound) If an algorithm achieves asymptotic
optimality, then on all bandit instances, it must have at least 3 batches in expectation
as T → ∞.

The batch complexity of our algorithm matches this lower bound!

Problem Setup Research Goal Algorithm and Analysis 参考文献 Optimal Batched Linear Bandits Xuanfei Ren 24/33



Outline

1 Problem Setup

2 Research Goal

3 Algorithm and Analysis
Design Theoretical Analysis Empirical Results



Experiments

(1, 0)

(0, 1)

(1 , 2 )
C1

C2
C3

”End of Optimism” instance.
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Experiments
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(a) d = 2,K = 3, ϵ =
0.01
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(b) d = 2,K = 3, ϵ =
0.01
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(c) d = 2,K = 3, ϵ = 0.2
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(d) d = 2,K = 3, ϵ =
0.2

Regret and Batch Analysis: ”End of Optimism” instances (d = 2,K = 3).
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Experiments

Instance E4 PhaElimD rs-OFUL EndOA IDS

d = 2,K = 3,T = 10000
ϵ = 0.01 3.0± 0.0 4.0± 0.0 36.1± 0.3 - -
ϵ = 0.2 3.0± 0.0 4.0± 0.0 37.0± 0.0 - -

d = 3,K = 5,T = 50000
ϵ = 0.01 3.0± 0.0 4.0± 0.0 61.0± 0.5 - -
ϵ = 0.2 3.0± 0.0 4.0± 0.0 60.5± 0.8 - -

d = 5,K = 9,T = 100000
ϵ = 0.01 3.0± 0.0 4.0± 0.0 102.3± 0.9 - -
ϵ = 0.2 3.0± 0.0 4.0± 0.0 101.8± 0.6 - -

Batch Complexity Analysis: ”End of Optimism” instances. Note that batch complexity of sequential algorithms
like EndOA and IDS equals time horizon.
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Experiments

Instance E4 PhaElimD rs-OFUL EndOA IDS

d = 2,K = 3,T = 10000
ϵ = 0.01 0.04 0.18 0.45 3.15 9.48
ϵ = 0.2 0.06 0.15 0.28 2.23 6.42

d = 3,K = 5,T = 50000
ϵ = 0.01 0.12 0.71 1.47 3.17 30.22
ϵ = 0.2 0.15 0.76 1.60 3.87 13.86

d = 5,K = 9,T = 100000
ϵ = 0.01 0.25 1.46 3.72 8.94 178.31
ϵ = 0.2 0.33 1.40 2.90 10.19 246.53

Runtime comparison (Unit: second per experiment).

Problem Setup Research Goal Algorithm and Analysis 参考文献 Optimal Batched Linear Bandits Xuanfei Ren 29/33



Thank you!
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