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Background1 Graph Distillation

Distilling the knowledge of a large-scale real graph 𝓣 into a small synthetic graph 𝓢, 
thus accelerating the training of GNNs.
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Bilevel-optimization



Background1 Pipeline of Graph Distillation
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Background1 Existing Methods
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Gradient Matching (GM) Trajectory Matching (TM) Distribution Matching (DM)

GM:

TM:

DM:



Motivation2

5

l Existing methods are model-specific, which have two limitations:
Ø Introduce distribution bias in the synthetic graph. 
Ø Need to traverse various distillation GNNs for optimal performance.

Left: Low-pass filter (AXW). 
Right: High-pass filter (LXW).

Table 1. Cross-architecture performance of GCOND 
with various distillation (D) and evaluation (E) GNNs.

l Goal: Distilling graphs without being affected by different GNNs.
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Theoretical Analysis3 Upper-bound of Gradient Matching

The objective of distillation GNNs can be simplified into a MSE loss:

The gradients on the real and synthetic graphs are:

The upper-bound of MSE loss between two gradients:  

Unsupervised Loss

Supervised Loss

Target Distribution
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Theoretical Analysis3 Spectrum Bias in Synthetic Graph

The target distribution can be formulated as:

Lemma. The target distribution is dominated by
the eigenvalues whose filtered values are greater
than 1, i.e., g(𝜆!)≥1.

When distillation GNN is a GCN and 𝑡 goes

to infinity, the target distribution will be
dominated by .

Solution: Match invariant information of the graph and design a model-agnostic 
graph distillation. 

invariant
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Ø Orthonormal regularization

GDEM4

Ø Matching eigenvectors with the 𝐾" smallest and 
the 𝐾# largest eigenvalues, 𝐾" + 𝐾# = 𝐾 ≤ 𝑁′.

Eigenbasis Matching

l Matching the eigenbasis and node features between the real and synthetic graphs. 
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GDEM4 Discrimination Constraint

l Limitations of Eigenbasis Matching
Eigenbasis matching improves the cross-architecture generalization but contributes less 
to the performance of node classification:
Ø Only preserves the distribution of                  .
Ø Neglect the information of downstream tasks.

l Design of Discrimination Constraint
Improve classification performance by constraining
the representation between real and synthetic graphs:

Intra-class Inter-class
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GDEM4 Synthetic Graph Constructing

l Constructing the synthetic graph by using the synthesized eigenbasis and replicating 
the spectrum of the real graph. 
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GDEM4 Algorithm of GDEM



12Table 2. Node classification performance of different distillation methods.

Experiments3 Performance of Node Classification
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Table 3. Generalization of different distillation methods across GNNs.

Experiments3 Cross-architecture Generalization
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Experiments3 Optimal Performance and Time Overhead

Table 4. Optimal performance of different methods.

Table 5. Time overhead (s) of different methods.

l Optimal performance of GDEM and baseline

l Time overhead
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Table 6.  Ablation studies of on Pubmed / Gamers 

Figure 3. Parameters analysis of 𝛼 and 𝛽.

Experiments3 Ablation Study

l Ablation studies 

l Parameters analysis  
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Figure 4. TVs of synthetic graphs distilled by different methods.

Figure 5. TVs of synthetic graphs at different epochs (GDEM).

(a) GCOND (b) SGDD (c) GDEM

(a) Epoch: 50 (b) Epoch: 100 (c) Epoch: 200

Experiments3 Visualization

l TVs of synthetic graphs distilled by different methods.

l TVs of synthetic graphs constructed by GDEM at different epochs.
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l Systematically analysis: We systematically analyze the limitations of existing
distillation methods, including spectrum bias and traversal requirement.

l Novel framework: We propose GDEM, a novel graph distillation framework, which
mitigates the dependence on GNNs by matching the eigenbasis instead of the
entire graph structure.

l SOTA performance: Extensive experiments on seven graph datasets validate the
superiority of GDEM over state-of-the-art GD methods in terms of effectiveness,
generalization, and efficiency.

Conclusion4
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