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Background KeIglsJdibIE I EYTely

Distilling the knowledge of a large-scale real graph I into a small synthetic graph §,

thus accelerating the training of GNNs.

T=AXY) s =(A,X,Y)

Graph Distillation

| - N >» N’ g/rg\

/

Comparable

Performance 154 training nodes

153, 932 training nodes

min £ (GNNp,, (A, X),Y)
g/

st Og = argmin L(GNNg(A' X"),Y")
0

Bilevel-optimization

6"



SE1S Gl V3ol Pipeline of Graph Distillation
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Motivation |

® Existing methods are model-specific, which have two limitations:

» Introduce distribution bias in the synthetic graph.

» Need to traverse various distillation GNNs for optimal performance.
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Left: Low-pass filter (AXW).

Right: High-pass filter (LXW).
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DNE GCN SGC PPNP Cheb. Bern. GPR.
GCN 7457 71770 75.53 70.13 68.40 71.73
SGC 7772 77.60 7734 76.03 7442 76.52
PPNP 72770 7040 7746 73.38 70.56 74.02
Cheb. 73.60 70.62 75.10 77.30 77.62 78.10
Bern. 67.68 73.76 7430 77.20 78.12 78.28
GPR. 76.04 7220 7794 7592 77.12 77.96

)2 Table 1. Cross-architecture performance of GCOND
’ with various distillation (D) and evaluation (E) GNNs.

® Goal: Distilling graphs without being affected by different GNNs.



Theoretical IENWAIE Upper-bound of Gradient

The objective of distillation GNNs can be simplified into a MSE loss:

L=g(L)XW —Y|7

The gradients on the real and synthetic graphs are:
Vw = (9(L)X)" (9(L)XW - ),
Vv = (9 (L) X)" (¢ (L) X'W - Y)
The upper-bound of MSE loss between two gradients:
Lov =||Vw — V;VH; Target Distribution
Unsupervised Loss <|[W||% [|X " ¢(L)**X] - X' g(L")**X’

Supervised Loss +|[X " g(L)Y)- X" g(L')"Y
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The target distribution can be formulated as:

Ay Uo
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When distillation GNN is a GCN and t goes ;\;F‘)""ﬁ[h‘ﬁ'c """" éé@};’dﬁ!a:}}?'/;;F;_""éfifi """
to infinity, the target distribution will be ‘ ‘
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Solution: Match invariant information of the graph and design a model-agnostic

graph distillation.
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® Matching the eigenbasis and node features between the real and synthetic graphs.

K-th subspace » Matching eigenvectors with the K; smallest and
2-nd subspace the K, Iargest eigenvalues, K; + K, = K < N'.
1-st subspace
AR, 2
X[T ulul X <-----= e — Z XTUkuk X/T / TXI
H A 4 7 F
Eigenbasis ™\ | 4T L,
Matching
1 » Orthonormal regularization
X' uup || X T 2
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® Limitations of Eigenbasis Matching
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Eigenbasis matching improves the cross-architecture generalization but contributes less

to the performance of node classification:

> Only preserves the distribution of X Tuu’™X .

» Neglect the information of downstream tasks.
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® Design of Discrimination Constraint
Improve classification performance by constraining
the representation between real and synthetic graphs:
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¢18]3\ R Synthetic Graph Constructing

® Constructing the synthetic graph by using the synthesized eigenbasis and replicating
the spectrum of the real graph.
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GDEM

Algorithm 1 GDEM for Graph Distillation
Input: Real graph G = (A, X,Y) with eigenvalues
{\i} 5| and eigenbasis Uk
Init: Synthetic graph G’ with eigenbasis U, node fea-
tures X', and labels Y’
fort =1to 71 do
Compute L., L,, and L, via Egs. 5, 6, and 8
Compute Liota; = aLe + LG + VLo
ift%(Tl + 7‘2) < 11 then
Update U’ + U’ — mVu, Liotal
else
Update X' <+ X" — 79V x'Liotal
end if
end for
Compute A’ = Zszl(l - )\k)u;cufcT
Return: A’, X’

11




Experiments

Performance of Node Classif

Traditional Methods Graph Distillation Methods Whole

Dataset Ratio (r) Random Coarsening Herding K-Center GCOND SFGC SGDD { GDEM Dataset
(AX) (AX) (A X) (AX) (AX) X) AX)p@wx)l
0.90% 54.4+4 .4 52.2+0.4 57.1£1.5 524428 70.5+1.2 71.4+0.5 69.5£041 72.3+0.3 '

Citeseer 1.80% 64.2+1.7 59.0+0.5 66.7x1.0 64.3x1.0 70.6£0.9 72.4+04 70.2+0.8 | 72.6+0.6 I 71.7+0.1
3.60% 69.1+0.1 65.3+0.5 69.0£0.1 69.1£0.1 69.8x1.4 70.6x0.7 70.3£1.7 | 72.6x0.5 l
0.08% 69.4+0.2 18.1+0.1 76.7£0.7 64.5+2.7 76.5+02 76.4+12 77.1£0.51 77.7+0.7 !

Pubmed 0.15% 73.3+0.7 28.7+4.1 76.2+0.5 69.4+0.7 77.1£0.5 77.5%0.4 78.0+0.31 78.4+1.8 I 79.3+0.2
0.30% 77.8+0.3 42.8+4.1 78.0£0.5 782404 779+04 77.9+0.3 77.5+0.5] 78.2+0.8 I
0.05% 47.1+£3.9 35.4+0.3 524+1.8 472430 59.2+1.1 65.5+0.7 60.8+1.3 1 63.7+0.8 :

Ogbn-arxiv 0.25% 57.3%1.1 43.5+0.2 58.6x1.2 56.840.8 63.2+0.3 66.1£0.4 65.8£1.2 | 63.8+£0.6 | 71.4%+0.1
0.50% 60.0+0.9 50.4+0.1 60.4+0.8 60.3+04 64.0+04 66.8+0.4 66.3+0.7] 64.1+0.3 )
0.10% 41.8+2.0 41.9+0.2 42.5¢1.8 42.0+0.7 46.5+04 46.6+0.2 46.9+0.1 I 49.9+0.8 :

Flickr 0.50% 44.0+0.4 44.5+0.1 439409 432+0.1 47.120.1 47.0£0.1 47.1203 | 49.4+1.3 | 47.2+0.1
1.00% 44.6+0.2 44.6+0.1 44.4+0.6 44.1+04 47.1+0.1 47.1+0.1 47.1+0.1 1 49.9+0.6 .
0.05% 46.1+4 .4 40.9+0.5 53.1+£2.5 46.6+2.3 88.0+x1.8 89.7+0.2 91.811.9I 92.9+0.3 ;

Reddit 0.10% 58.0+2.2 42.8+0.8 62.741.0 53.0+33 89.6+0.7 90.0+0.3 91.0+1.6 | 93.1+0.2 | 03.9+0.0
0.50% 66.3+1.9 47.4+0.9 71.0£1.6 585+2.1 90.1+0.5 89.9+0.4 91.6+1.81 93.2+0.4 .
0.60% 22.4+1.6 20.9+1.1 21.3+1.1 21.840.3 27.0+£1.3 24.0+0.4 24.112.3I 28.4+2.0 |

Squirrel 1.20% 25.0+0.2 21.1+0.4 21.442.1 228409 257423 269425 24.7+£25 I 28.2+2.4 | 33.0£0.4
2.50% 26.9+1.4 21.5+0.3 224+1.6 229+1.7 253+0.8 26.1x0.8 25.8+1.81 27.8+1.6 I
0.05% 56.6%+1.8 56.1+0.1 56.7x1.7 52.5+42 58.5+1.5 58.2%l1.1 57.5i1.8I 59.3+1.9 |

Gamers 0.25% 60.5+1.0 56.9+3.0 57.5+2.0 572423 58.9+1.8 58.8+0.5 57.7il.OI 60.8+0.4 1 62.6+0.0

0.50% 60.0£0.5 57.1+0.4 58.6+1.3 57.8+1.7 58.5+19 59.9+03 58.4+1.71 61.2+0.3

A3

Table 2. Node classification performance of different distillation methods.
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ENENRIE] Cross-architecture Generaliz

Datasets Spatial GNNs Spectral GNNs
(Ratio) ~ Metheds GoN SGC PPNP - ChebyNet BernNet GPR-GNN A& (1) Std. (1) Impro. ()
~ GCOND 632 637 634 54.9 55.0 60.5 60.12 3.80 (+) 2.90
Ogbn-arxiv  gpGC 65.1 648 639 60.7 63.8 64.9 63.87 1.50 (-) 0.85
(r=0.25%) sGDD 65.8 640 63.6 56.4 62.0 64.0 62.63 3.00 (+) 0.39
GDEM 638 629 635 62.4 61.9 63.6 63.02 0.69 -
. GCOND  47.1 46.1 459 42.8 443 46.4 45.43 1.45 (+) 3.90
Flickr SFGC 471 425 407 45.4 45.7 46.4 44.63 2.27 (+) 4.70
(r =0.50%) sGDD 47.1 465 443 45.3 46.0 46.8 46.00. _ 096  (+)3.33
GDEM 494 503 494 483 49.6 49.0 r219;33_ 060, -
_ GCOND 894 89.6 87.8 75.5 67.1 78.8 81.37 835  (+)10.10
Reddit SFGC 89.7 895 883 82.8 87.8 85.4 87.25 2.44 (+) 4.22
(r=010%) SGDD  91.0 894 892 78.4 72.4 81.4 83.63 _ _680  (+)7.84
GDEM  93.1 900 92.6 90.0 92.7 90.4 (91.47 135, -
GCOND 589 542  60.1 60.3 59.1 59.3 58.65 2.05 (+) 1.57
Gamers  SFGC 588 550 56.3 57.2 57.5 59.8 57.43 1.57 (+) 2.79
(r=0.25%) SGDD 577 546  56.0 573 58.8 58.6 SLIT _ 147 (+)3.05
GDEM  60.8 59.5 61.0 59.9 59.8 60.3 @0;22_ 054, -

Table 3. Generalization of different distillation methods across GNNSs.
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Experiments O] ilniEIN T {eITiETI-R:Tsle

® Optimal performance of GDEM and baseline

Evaluation GCN SGC PPNP Cheb. Bern. GPR.

GCOND 777 716 779 713 782 783
SGDD 780 766 787 715 780 783
GDEM f 784 761 781 781 782 78.6 |

Table 4. Optimal performance of different methods.

® Time overhead

Distillation GCN SGC PPNP Cheb. Bern. GPR. Overall

GCOND 199 136 152 389 5694 3.05 68.75
SGDD 295 218 233 495 58.07 428 7476

GDEM ] _ _ - - S 179

v

Table 5. Time overhead (s) of different methods.

14



Experiments IYSE T

® Ablation studies

Pubmed GCN (1) GPR.(1)  Ave. (D) [ Var (}) |

GDEM 78.4/608 78.6/60.3 77.92/60.22 10.69/0.29
wlo L. 76.1/565 76.9/59.8 76.13/58.93 11.18/2.391
wio L, 77.9/59.0 764/589 77.07/5885 |2.15/2.34!
wio Lq  767/59.9 77.2/603 76.77/59.78 (0.21/0.13,

- e e - O

Table 6. Ablation studies of on Pubmed / Gamers
® Parameters analysis

90 1.2 84
—— Accuracy —— Accuracy 1.6
—— Variance —— Variance
X85 0.8 ¢ X 81 o
> e > 0.8 ©
2 8 3 &
5 © 5 ©
S 80 0.4~ O 78 >
< < .’_’/‘__,/.\’\. L 0.0
751 : : : 0.0 75 ; .
le-4 le-3 le-2 le-1 le+0 le+l le-8 le-7 le-6 le-5 le-4 le-3
Analysis of a with 8=10"" Analysis of 5 with a=1.0

Figure 3. Parameters analysis of a and £. 15
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® TV/s of synthetic graphs distilled by different methods.

Real Graph, TV=0.87
GCOND, TV=0.76

Real Graph, TV=0.87
SGDD, TV=0.80

Real Graph, TV=0.87
GDEM, TV=0.83
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(a) GCOND (b) SGDD (c) GDEM
Figure 4. TVs of synthetic graphs distilled by different methods.

® TV/s of synthetic graphs constructed by GDEM at different epochs.

=15 Real Graph, TV=0.87 =15 Real Graph, TV=0.87 =15 Real Graph, TV=0.87
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0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
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(a) Epoch: 50 (b) Epoch: 100 (c) Epoch: 200

Figure 5. TVs of synthetic graphs at different epochs (GDEM). 16



® Systematically analysis: We systematically analyze the limitations of existing
distillation methods, including spectrum bias and traversal requirement.

® Novel framework: We propose GDEM, a novel graph distillation framework, which
mitigates the dependence on GNNs by matching the eigenbasis instead of the
entire graph structure.

® SOTA performance: Extensive experiments on seven graph datasets validate the

superiority of GDEM over state-of-the-art GD methods in terms of effectiveness,
generalization, and efficiency.
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