

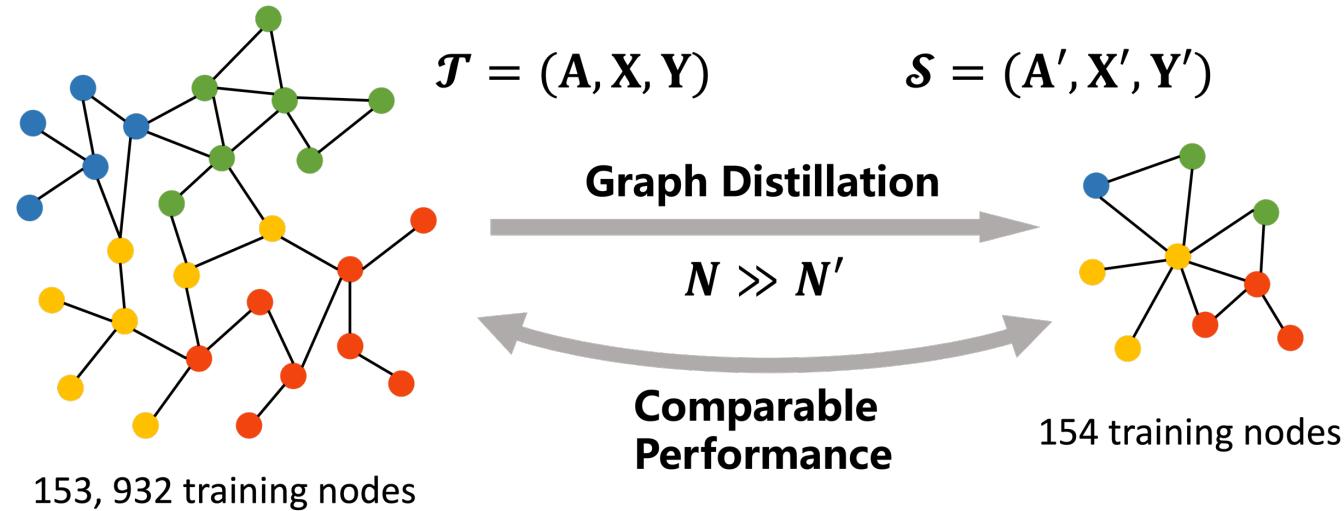
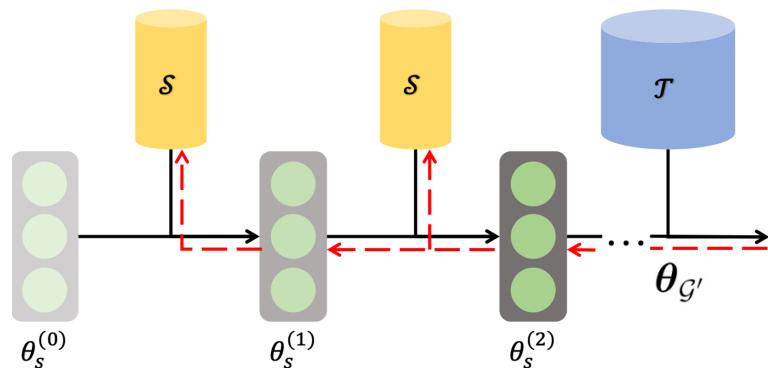
Graph Distillation with Eigenbasis Matching

Yang Liu¹, Deyu Bo¹, Chuan Shi^{1†}

¹ Beijing University of Posts and Telecommunication.

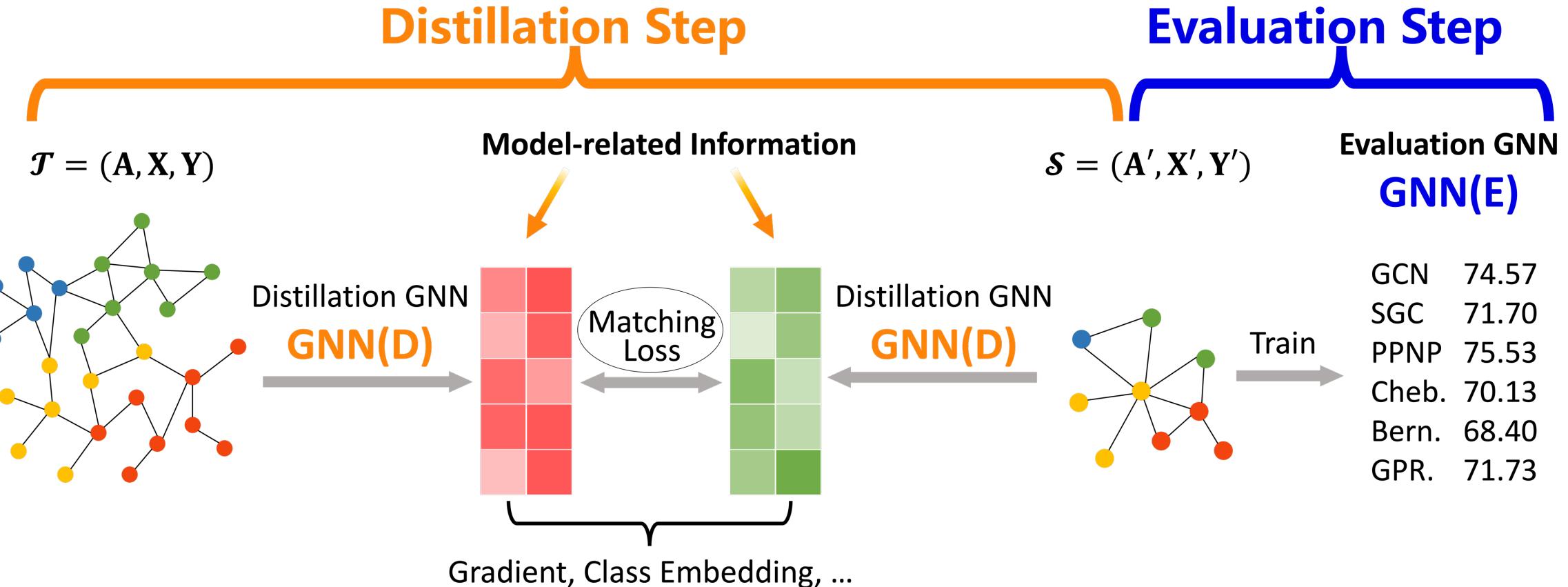
1 Background Graph Distillation

Distilling the knowledge of a large-scale real graph \mathcal{T} into a small synthetic graph \mathcal{S} , thus accelerating the training of GNNs.

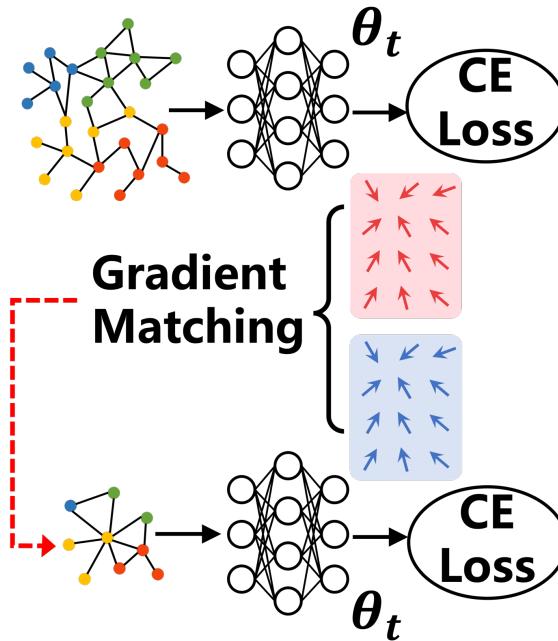


$$\begin{aligned} & \min_{\mathcal{G}'} \mathcal{L} (\text{GNN}_{\theta_{\mathcal{G}'}} (\mathbf{A}, \mathbf{X}), \mathbf{Y}) \\ \text{s.t. } & \theta_{\mathcal{G}'} = \arg \min_{\theta} \mathcal{L} (\text{GNN}_{\theta} (\mathbf{A}', \mathbf{X}'), \mathbf{Y}') \end{aligned}$$

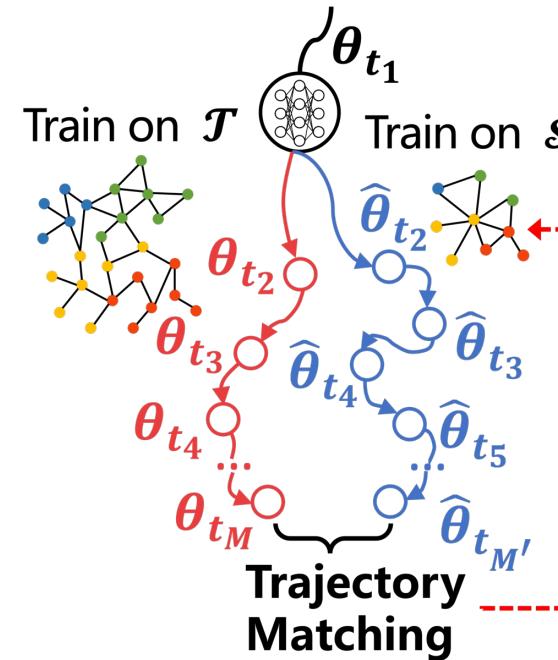
Bilevel-optimization



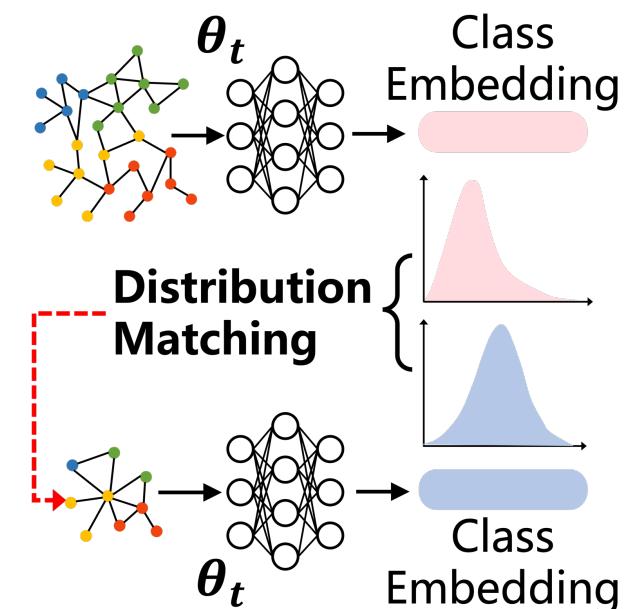
Gradient Matching (GM)



Trajectory Matching (TM)



Distribution Matching (DM)

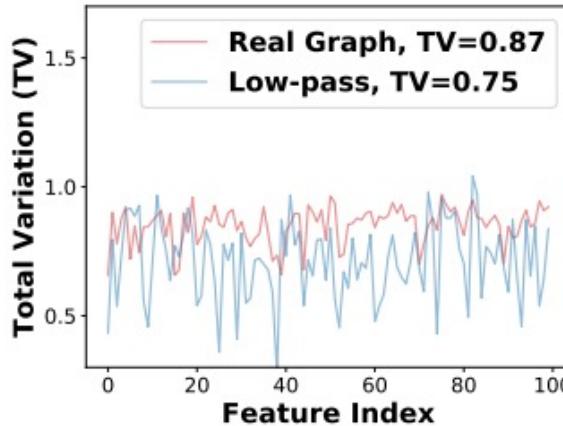
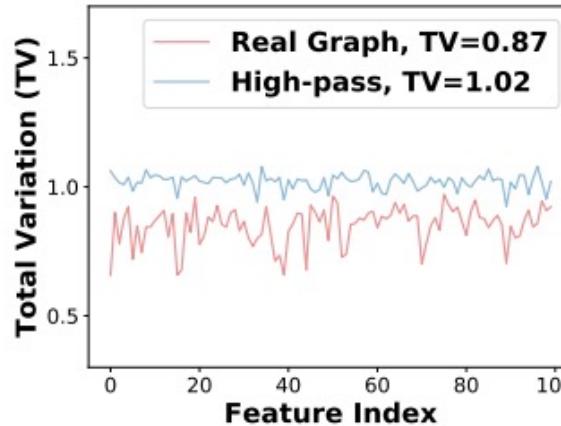


$$GM: \min_{\mathbf{A}', \mathbf{X}'} \mathbb{E}_{\theta \sim P_\theta} [D(\nabla_\theta \mathcal{L}(\Phi_\theta(\mathbf{A}', \mathbf{X}'), \mathbf{Y}'), \nabla_\theta \mathcal{L}(\Phi_\theta(\mathbf{A}, \mathbf{X}), \mathbf{Y}))]$$

$$TM: \min_{\mathbf{A}', \mathbf{X}'} \mathbb{E}_{\theta \sim P_\theta} \left[\sum_{t=1}^L D(\Phi_\theta^t(\mathbf{A}', \mathbf{X}'), \Phi_\theta^t(\mathbf{A}, \mathbf{X})) \right]$$

$$DM: \min_{\mathbf{A}', \mathbf{X}'} \mathbb{E}_{\theta_t^{*,i} \sim P_{\Theta\mathcal{T}}} \left[\mathcal{L}_{\text{meta-tt}} \left(\theta_t^{*|p}_{t=t_0}, \tilde{\theta}_t^{|q}_{t=t_0} \right) \right]$$

- Existing methods are **model-specific**, which have two limitations:
 - Introduce distribution bias in the synthetic graph.
 - Need to traverse various distillation GNNs for optimal performance.



Left: Low-pass filter (AXW).
Right: High-pass filter (LWX).

$$TV = \mathbf{x}^\top \mathbf{L} \mathbf{x} = \sum_{(i,j) \in \mathcal{E}} (x_i - x_j)^2$$

D \ E	GCN	SGC	PPNP	Cheb.	Bern.	GPR.
GCN	74.57	71.70	75.53	70.13	68.40	71.73
SGC	77.72	77.60	77.34	76.03	74.42	76.52
PPNP	72.70	70.40	77.46	73.38	70.56	74.02
Cheb.	73.60	70.62	75.10	77.30	77.62	78.10
Bern.	67.68	73.76	74.30	77.20	78.12	78.28
GPR.	76.04	72.20	77.94	75.92	77.12	77.96

Table 1. Cross-architecture performance of GCOND with various distillation (D) and evaluation (E) GNNs.

- Goal:** Distilling graphs without being affected by different GNNs.

3 Theoretical Analysis Upper-bound of Gradient Matching

The objective of distillation GNNs can be simplified into a MSE loss:

$$\mathcal{L} = \|g(\mathbf{L}) \mathbf{X} \mathbf{W} - \mathbf{Y}\|_F^2$$

The gradients on the real and synthetic graphs are:

$$\nabla_{\mathbf{W}} = (g(\mathbf{L}) \mathbf{X})^T (g(\mathbf{L}) \mathbf{X} \mathbf{W} - \mathbf{Y}),$$

$$\nabla'_{\mathbf{W}} = (g(\mathbf{L}') \mathbf{X}')^T (g(\mathbf{L}') \mathbf{X}' \mathbf{W} - \mathbf{Y}')$$

The upper-bound of MSE loss between two gradients:

$$\begin{aligned} \mathcal{L}_{GM} &= \|\nabla_{\mathbf{W}} - \nabla'_{\mathbf{W}}\|_F^2 && \text{Target Distribution} \\ \text{Unsupervised Loss} &\leq \|\mathbf{W}\|_F^2 \left\| \mathbf{X}^\top g(\mathbf{L})^{2t} \mathbf{X} - \mathbf{X}'^\top g(\mathbf{L}')^{2t} \mathbf{X}' \right\|_F^2 \\ \text{Supervised Loss} &\quad + \left\| \mathbf{X}^\top g(\mathbf{L})^t \mathbf{Y} - \mathbf{X}'^\top g(\mathbf{L}')^t \mathbf{Y}' \right\|_F^2, \end{aligned}$$

The target distribution can be formulated as:

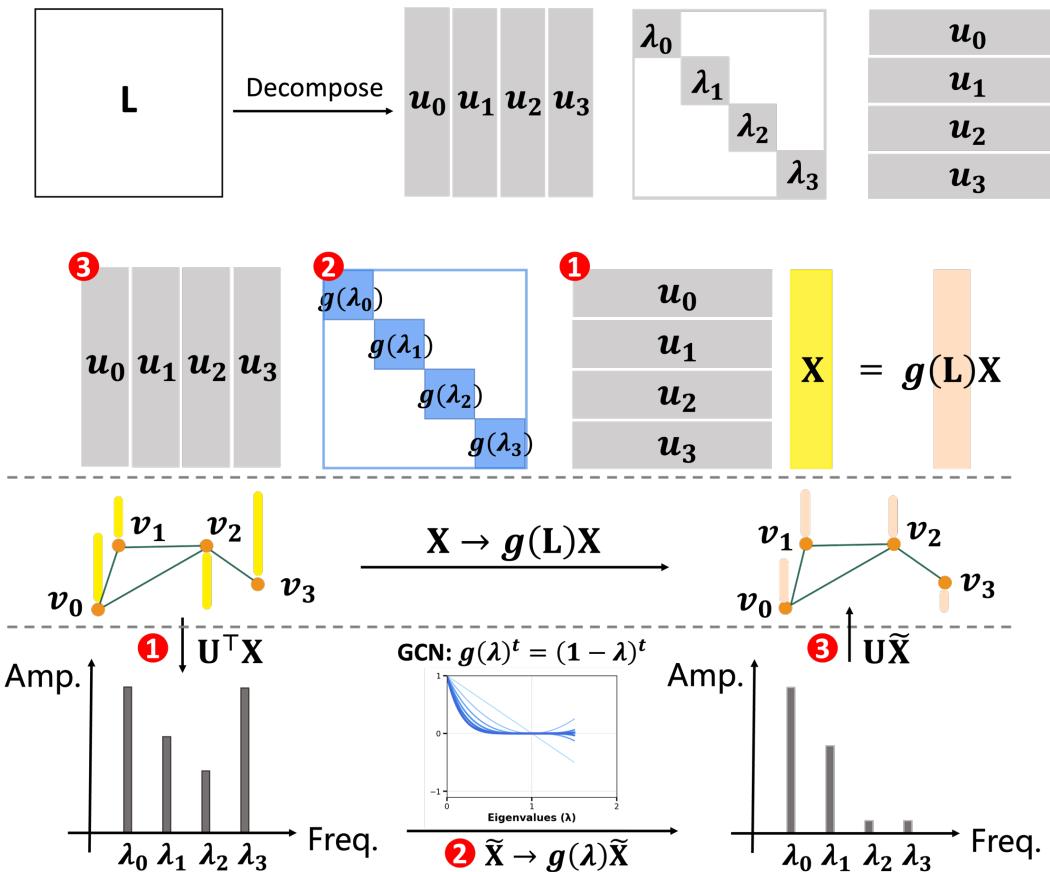
$$\mathbf{X}^\top g(\mathbf{L})^{2t} \mathbf{X} = \sum_{i=1}^N g(\lambda_i)^{2t} \mathbf{X}^\top \mathbf{u}_i \mathbf{u}_i^\top \mathbf{X}$$

$$\mathbf{X}^\top g(\mathbf{L})^t \mathbf{Y} = \sum_{i=1}^N g(\lambda_i)^t \mathbf{X}^\top \mathbf{u}_i \mathbf{u}_i^\top \mathbf{Y}$$

invariant

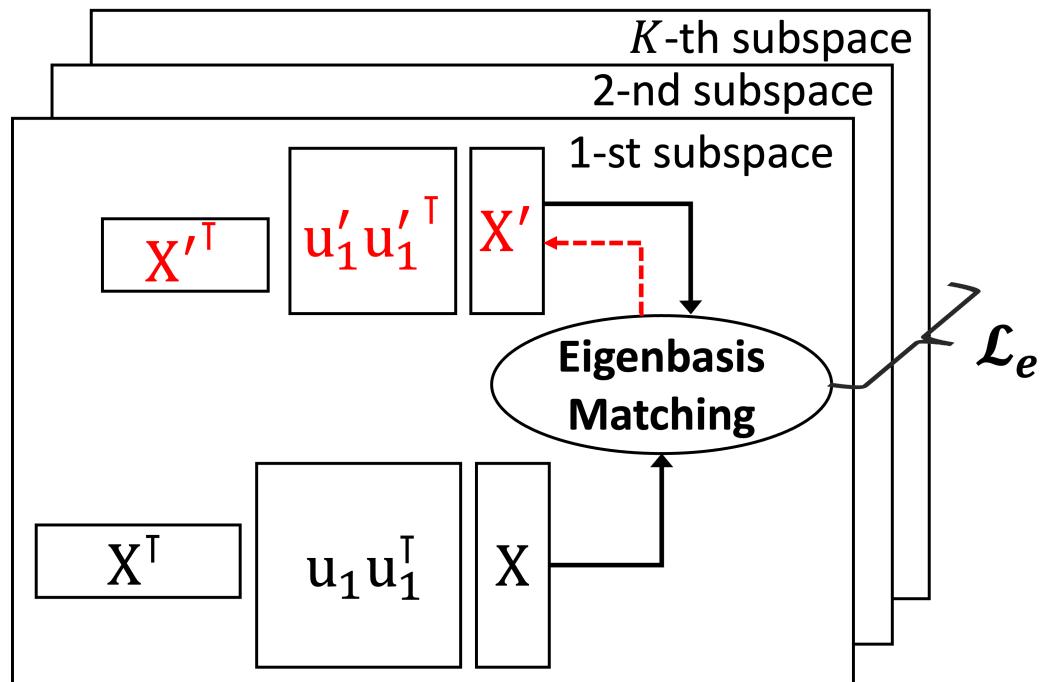
Lemma. The target distribution is dominated by the eigenvalues whose filtered values are greater than 1, i.e., $g(\lambda_i) \geq 1$.

When distillation GNN is a GCN and t goes to infinity, the target distribution will be dominated by $\mathbf{X}^\top \mathbf{u}_0 \mathbf{u}_0^\top \mathbf{X}$.



Solution: Match invariant information of the graph and design a model-agnostic graph distillation.

- Matching the eigenbasis and node features between the real and synthetic graphs.



- Matching eigenvectors with the K_1 smallest and the K_2 largest eigenvalues, $K_1 + K_2 = K \leq N'$.

$$\mathcal{L}_e = \sum_{k=1}^K \left\| \mathbf{X}^\top \mathbf{u}_k \mathbf{u}_k^\top \mathbf{X} - \mathbf{X}'^\top \mathbf{u}'_k \mathbf{u}'_k^\top \mathbf{X}' \right\|_F^2$$

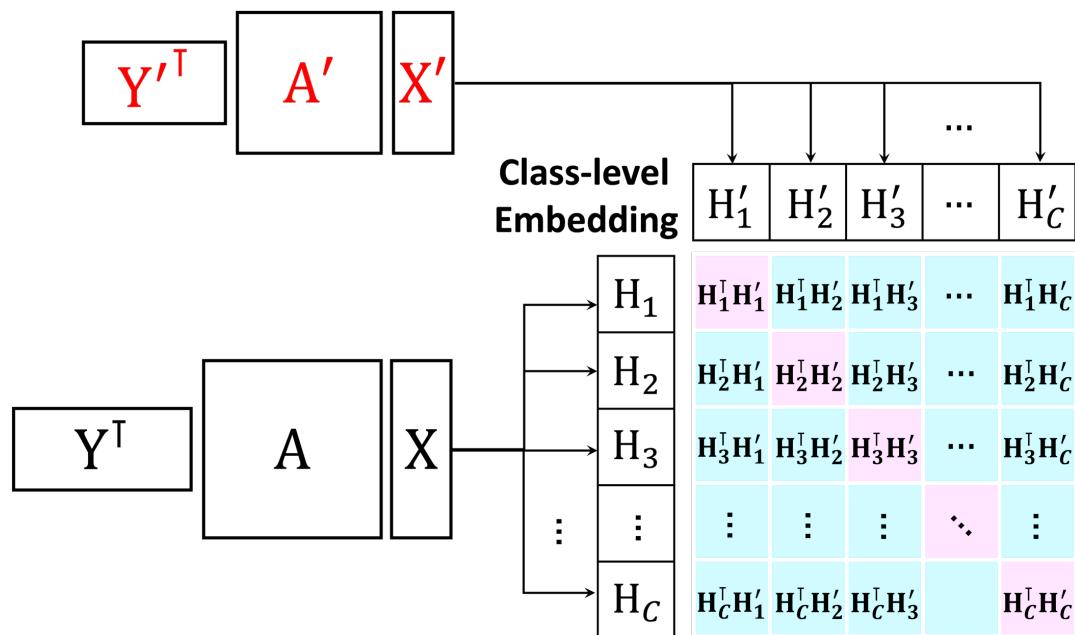
- Orthonormal regularization

$$\mathcal{L}_o = \left\| \mathbf{U}'_K^\top \mathbf{U}'_K - \mathbf{I}_K \right\|_F^2$$

● Limitations of Eigenbasis Matching

Eigenbasis matching improves the cross-architecture generalization but **contributes less to the performance of node classification**:

- Only preserves the distribution of $\mathbf{X}^\top \mathbf{u} \mathbf{u}^\top \mathbf{X}$.
- Neglect the information of downstream tasks.



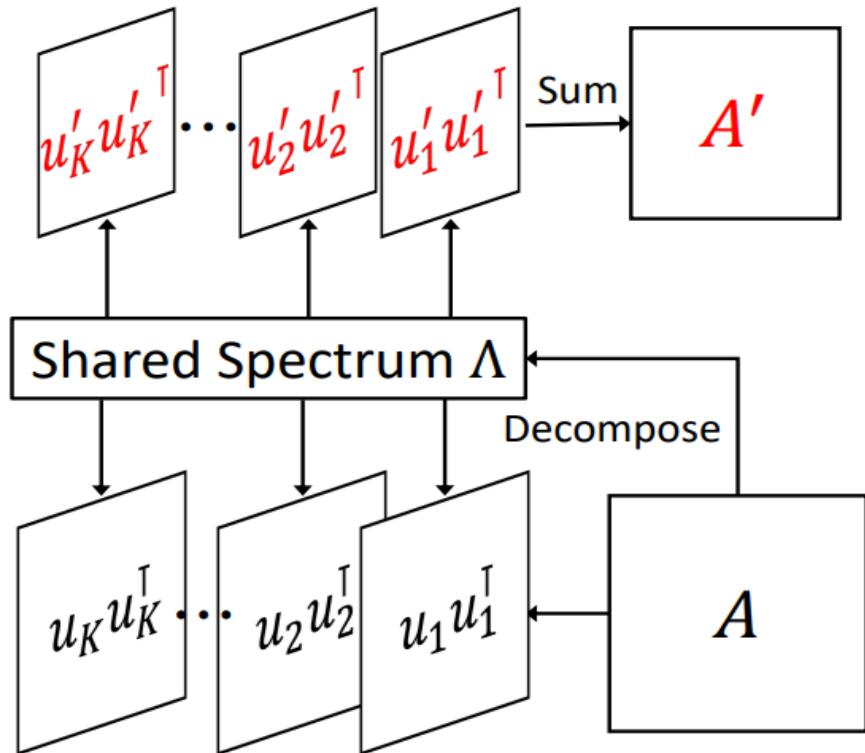
● Design of Discrimination Constraint

Improve classification performance by constraining the representation between real and synthetic graphs:

$$\mathbf{H} = \mathbf{Y}^\top \mathbf{A} \mathbf{X}, \quad \mathbf{H}' = \mathbf{Y}'^\top \sum_{k=1}^K (1 - \lambda_k) \mathbf{u}'_k \mathbf{u}'_k^\top \mathbf{X}',$$

$$\mathcal{L}_d = \sum_{i=1}^C \underbrace{\left(1 - \frac{\mathbf{H}_i^\top \cdot \mathbf{H}'_i}{\|\mathbf{H}_i\| \|\mathbf{H}'_i\|}\right)}_{\text{Intra-class}} + \sum_{\substack{i,j=1 \\ i \neq j}}^C \underbrace{\frac{\mathbf{H}_i^\top \cdot \mathbf{H}'_j}{\|\mathbf{H}_i\| \|\mathbf{H}'_j\|}}_{\text{Inter-class}}.$$

- Constructing the synthetic graph by using the synthesized eigenbasis and replicating the spectrum of the real graph.



$$\mathbf{L}' = \sum_{k=1}^K \lambda_k \mathbf{u}'_k \mathbf{u}'_k^\top$$

$$\mathbf{A}' = \sum_{k=1}^K (1 - \lambda_k) \mathbf{u}'_k \mathbf{u}'_k^\top$$

Algorithm 1 GDEM for Graph Distillation

Input: Real graph $\mathcal{G} = (\mathbf{A}, \mathbf{X}, \mathbf{Y})$ with eigenvalues $\{\lambda_i\}_{i=1}^K$ and eigenbasis \mathbf{U}_K

Init: Synthetic graph \mathcal{G}' with eigenbasis \mathbf{U}'_K , node features \mathbf{X}' , and labels \mathbf{Y}'

for $t = 1$ **to** T **do**

 Compute \mathcal{L}_e , \mathcal{L}_o , and \mathcal{L}_d via Eqs. 5, 6, and 8

 Compute $\mathcal{L}_{total} = \alpha\mathcal{L}_e + \beta\mathcal{L}_d + \gamma\mathcal{L}_o$

if $t\%(\tau_1 + \tau_2) < \tau_1$ **then**

 Update $\mathbf{U}'_K \leftarrow \mathbf{U}'_K - \eta_1 \nabla_{\mathbf{U}'_K} \mathcal{L}_{total}$

else

 Update $\mathbf{X}' \leftarrow \mathbf{X}' - \eta_2 \nabla_{\mathbf{X}'} \mathcal{L}_{total}$

end if

end for

Compute $\mathbf{A}' = \sum_{k=1}^K (1 - \lambda_k) \mathbf{u}'_k \mathbf{u}'_k^\top$

Return: \mathbf{A}' , \mathbf{X}'

Dataset	Ratio (r)	Traditional Methods				Graph Distillation Methods				Whole Dataset
		Random (\mathbf{A}', \mathbf{X}')	Coarsening (\mathbf{A}', \mathbf{X}')	Herding (\mathbf{A}', \mathbf{X}')	K-Center (\mathbf{A}', \mathbf{X}')	GCOND (\mathbf{A}', \mathbf{X}')	SFGC (\mathbf{X}')	SGDD (\mathbf{A}', \mathbf{X}')	GDEM (\mathbf{U}', \mathbf{X}')	
Citeseer	0.90%	54.4 \pm 4.4	52.2 \pm 0.4	57.1 \pm 1.5	52.4 \pm 2.8	70.5 \pm 1.2	<u>71.4\pm0.5</u>	69.5 \pm 0.4	72.3\pm0.3	71.7 \pm 0.1
	1.80%	64.2 \pm 1.7	59.0 \pm 0.5	66.7 \pm 1.0	64.3 \pm 1.0	70.6 \pm 0.9	<u>72.4\pm0.4</u>	70.2 \pm 0.8	72.6\pm0.6	
	3.60%	69.1 \pm 0.1	65.3 \pm 0.5	69.0 \pm 0.1	69.1 \pm 0.1	69.8 \pm 1.4	<u>70.6\pm0.7</u>	70.3 \pm 1.7	72.6\pm0.5	
Pubmed	0.08%	69.4 \pm 0.2	18.1 \pm 0.1	<u>76.7\pm0.7</u>	64.5 \pm 2.7	76.5 \pm 0.2	76.4 \pm 1.2	77.1 \pm 0.5	77.7\pm0.7	79.3 \pm 0.2
	0.15%	73.3 \pm 0.7	28.7 \pm 4.1	76.2 \pm 0.5	69.4 \pm 0.7	77.1 \pm 0.5	<u>77.5\pm0.4</u>	78.0 \pm 0.3	78.4\pm1.8	
	0.30%	77.8 \pm 0.3	42.8 \pm 4.1	78.0 \pm 0.5	78.2\pm0.4	77.9 \pm 0.4	77.9 \pm 0.3	77.5 \pm 0.5	78.2\pm0.8	
Ogbn-arxiv	0.05%	47.1 \pm 3.9	35.4 \pm 0.3	52.4 \pm 1.8	47.2 \pm 3.0	59.2 \pm 1.1	65.5\pm0.7	60.8 \pm 1.3	<u>63.7\pm0.8</u>	71.4 \pm 0.1
	0.25%	57.3 \pm 1.1	43.5 \pm 0.2	58.6 \pm 1.2	56.8 \pm 0.8	63.2 \pm 0.3	66.1\pm0.4	<u>65.8\pm1.2</u>	63.8 \pm 0.6	
	0.50%	60.0 \pm 0.9	50.4 \pm 0.1	60.4 \pm 0.8	60.3 \pm 0.4	64.0 \pm 0.4	66.8\pm0.4	<u>66.3\pm0.7</u>	64.1 \pm 0.3	
Flickr	0.10%	41.8 \pm 2.0	41.9 \pm 0.2	42.5 \pm 1.8	42.0 \pm 0.7	46.5 \pm 0.4	46.6 \pm 0.2	<u>46.9\pm0.1</u>	49.9\pm0.8	47.2 \pm 0.1
	0.50%	44.0 \pm 0.4	44.5 \pm 0.1	43.9 \pm 0.9	43.2 \pm 0.1	<u>47.1\pm0.1</u>	47.0 \pm 0.1	<u>47.1\pm0.3</u>	49.4\pm1.3	
	1.00%	44.6 \pm 0.2	44.6 \pm 0.1	44.4 \pm 0.6	44.1 \pm 0.4	<u>47.1\pm0.1</u>	<u>47.1\pm0.1</u>	<u>47.1\pm0.1</u>	49.9\pm0.6	
Reddit	0.05%	46.1 \pm 4.4	40.9 \pm 0.5	53.1 \pm 2.5	46.6 \pm 2.3	88.0 \pm 1.8	89.7 \pm 0.2	<u>91.8\pm1.9</u>	92.9\pm0.3	93.9 \pm 0.0
	0.10%	58.0 \pm 2.2	42.8 \pm 0.8	62.7 \pm 1.0	53.0 \pm 3.3	89.6 \pm 0.7	90.0 \pm 0.3	<u>91.0\pm1.6</u>	93.1\pm0.2	
	0.50%	66.3 \pm 1.9	47.4 \pm 0.9	71.0 \pm 1.6	58.5 \pm 2.1	90.1 \pm 0.5	89.9 \pm 0.4	<u>91.6\pm1.8</u>	93.2\pm0.4	
Squirrel	0.60%	22.4 \pm 1.6	20.9 \pm 1.1	21.3 \pm 1.1	21.8 \pm 0.3	<u>27.0\pm1.3</u>	24.0 \pm 0.4	24.1 \pm 2.3	28.4\pm2.0	33.0 \pm 0.4
	1.20%	25.0 \pm 0.2	21.1 \pm 0.4	21.4 \pm 2.1	22.8 \pm 0.9	25.7 \pm 2.3	<u>26.9\pm2.5</u>	24.7 \pm 2.5	28.2\pm2.4	
	2.50%	<u>26.9\pm1.4</u>	21.5 \pm 0.3	22.4 \pm 1.6	22.9 \pm 1.7	25.3 \pm 0.8	26.1 \pm 0.8	25.8 \pm 1.8	27.8\pm1.6	
Gamers	0.05%	56.6 \pm 1.8	56.1 \pm 0.1	56.7 \pm 1.7	52.5 \pm 4.2	<u>58.5\pm1.5</u>	58.2 \pm 1.1	57.5 \pm 1.8	59.3\pm1.9	62.6 \pm 0.0
	0.25%	<u>60.5\pm1.0</u>	56.9 \pm 3.0	57.5 \pm 2.0	57.2 \pm 2.3	58.9 \pm 1.8	58.8 \pm 0.5	57.7 \pm 1.0	60.8\pm0.4	
	0.50%	<u>60.0\pm0.5</u>	57.1 \pm 0.4	58.6 \pm 1.3	57.8 \pm 1.7	58.5 \pm 1.9	59.9 \pm 0.3	58.4 \pm 1.7	61.2\pm0.3	

Table 2. Node classification performance of different distillation methods.

Datasets (Ratio)	Methods	Spatial GNNs			Spectral GNNs			Avg. (↑)	Std. (↓)	Impro. (↑)
		GCN	SGC	PPNP	ChebyNet	BernNet	GPR-GNN			
Ogbn-arxiv ($r = 0.25\%$)	GCOND	63.2	63.7	63.4	54.9	55.0	60.5	60.12	3.80	(+) 2.90
	SFGC	65.1	64.8	63.9	60.7	63.8	64.9	63.87	1.50	(-) 0.85
	SGDD	65.8	64.0	63.6	56.4	62.0	64.0	62.63	3.00	(+) 0.39
	GDEM	63.8	62.9	63.5	62.4	61.9	63.6	63.02	0.69	-
Flickr ($r = 0.50\%$)	GCOND	47.1	46.1	45.9	42.8	44.3	46.4	45.43	1.45	(+) 3.90
	SFGC	47.1	42.5	40.7	45.4	45.7	46.4	44.63	2.27	(+) 4.70
	SGDD	47.1	46.5	44.3	45.3	46.0	46.8	46.00	0.96	(+) 3.33
	GDEM	49.4	50.3	49.4	48.3	49.6	49.0	49.33	0.60	-
Reddit ($r = 0.10\%$)	GCOND	89.4	89.6	87.8	75.5	67.1	78.8	81.37	8.35	(+) 10.10
	SFGC	89.7	89.5	88.3	82.8	87.8	85.4	87.25	2.44	(+) 4.22
	SGDD	91.0	89.4	89.2	78.4	72.4	81.4	83.63	6.80	(+) 7.84
	GDEM	93.1	90.0	92.6	90.0	92.7	90.4	91.47	1.35	-
Gamers ($r = 0.25\%$)	GCOND	58.9	54.2	60.1	60.3	59.1	59.3	58.65	2.05	(+) 1.57
	SFGC	58.8	55.0	56.3	57.2	57.5	59.8	57.43	1.57	(+) 2.79
	SGDD	57.7	54.6	56.0	57.3	58.8	58.6	57.17	1.47	(+) 3.05
	GDEM	60.8	59.5	61.0	59.9	59.8	60.3	60.22	0.54	-

Table 3. Generalization of different distillation methods across GNNs.

- Optimal performance of GDEM and baseline

Evaluation	GCN	SGC	PPNP	Cheb.	Bern.	GPR.
GCOND	77.7	77.6	77.9	77.3	78.2	78.3
SGDD	78.0	76.6	78.7	77.5	78.0	78.3
GDEM	78.4	76.1	78.1	78.1	78.2	78.6

Table 4. Optimal performance of different methods.

- Time overhead

Distillation	GCN	SGC	PPNP	Cheb.	Bern.	GPR.	Overall
GCOND	1.99	1.36	1.52	3.89	56.94	3.05	68.75
SGDD	2.95	2.18	2.33	4.95	58.07	4.28	74.76
GDEM	-	-	-	-	-	-	1.79

Table 5. Time overhead (s) of different methods.

- Ablation studies

Pubmed	GCN (\uparrow)	GPR. (\uparrow)	Avg. (\uparrow)	Var. (\downarrow)
GDEM	78.4 / 60.8	78.6 / 60.3	77.92 / 60.22	0.69 / 0.29
w/o \mathcal{L}_e	76.1 / 56.5	76.9 / 59.8	76.13 / 58.93	1.18 / 2.39
w/o \mathcal{L}_o	77.9 / 59.0	76.4 / 58.9	77.07 / 58.85	2.15 / 2.34
w/o \mathcal{L}_d	76.7 / 59.9	77.2 / 60.3	76.77 / 59.78	0.21 / 0.13

Table 6. Ablation studies of on Pubmed / Gamers

- Parameters analysis

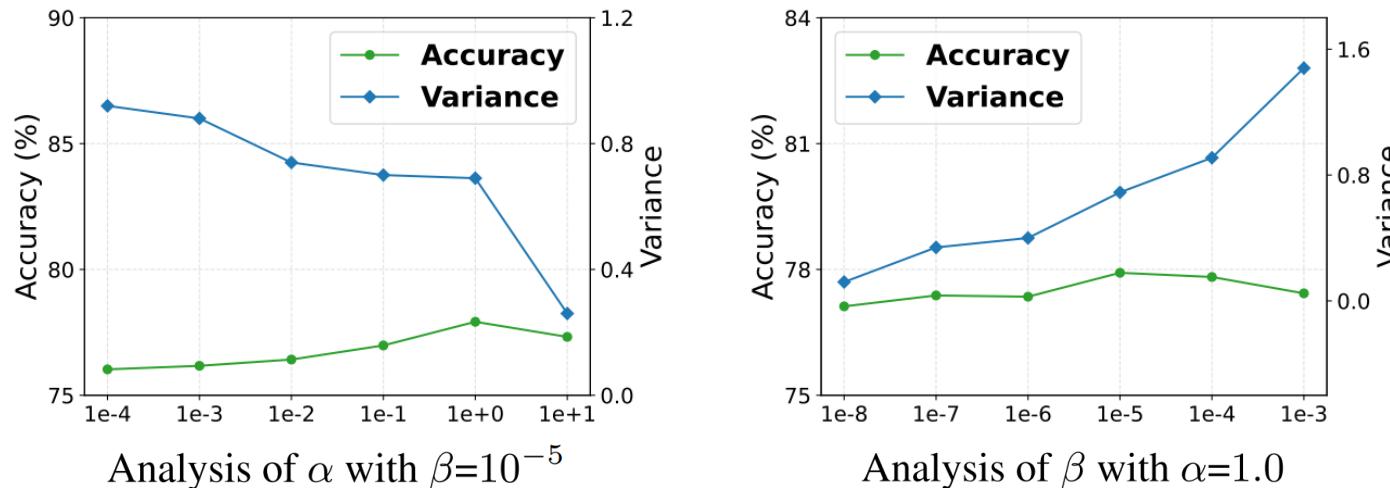
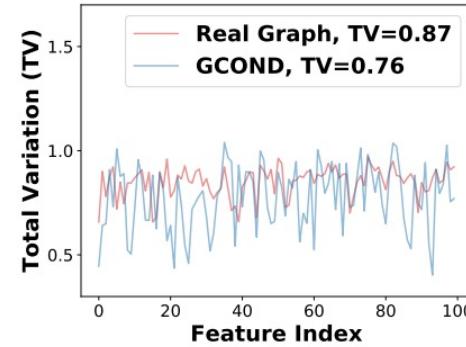
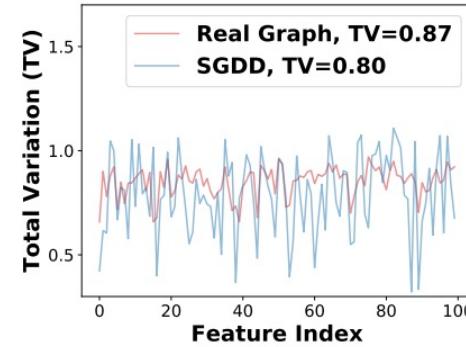


Figure 3. Parameters analysis of α and β .

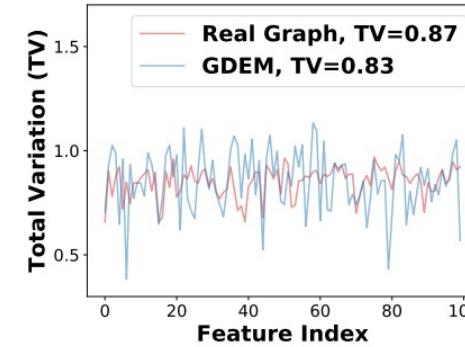
- TVs of synthetic graphs distilled by different methods.



(a) GCOND



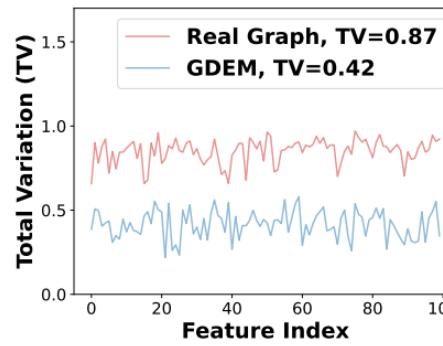
(b) SGDD



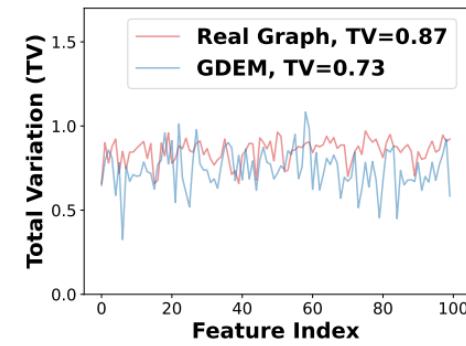
(c) GDEM

Figure 4. TVs of synthetic graphs distilled by different methods.

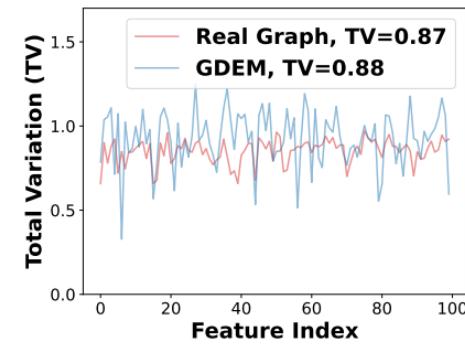
- TVs of synthetic graphs constructed by GDEM at different epochs.



(a) Epoch: 50



(b) Epoch: 100



(c) Epoch: 200

Figure 5. TVs of synthetic graphs at different epochs (GDEM).

- **Systematically analysis:** We systematically analyze the limitations of existing distillation methods, including spectrum bias and traversal requirement.
- **Novel framework:** We propose GDEM, a novel graph distillation framework, which mitigates the dependence on GNNs by matching the eigenbasis instead of the entire graph structure.
- **SOTA performance:** Extensive experiments on seven graph datasets validate the superiority of GDEM over state-of-the-art GD methods in terms of effectiveness, generalization, and efficiency.

Paper

Code

Thanks

Q&A

千

扫一扫上面的二维码图案，加我为朋友。

liuyangjanet@bupt.edu.cn