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Scaling up LLM beyond 6.7B parameters, systematic outliers with large
magnitude will emerge in activations1, leading to large quantization errors and
accuracy degradation.

OPT-66B
Activation Outliers

INT scale range
Outliers uncovered FP value range 

Wide but redundant

No value, waste bits

Value distribution of input activations in one Linear Layer of OPT-66B model

1Tim Dettmers et al. (2022). “Llm. int8 (): 8-bit matrix multiplication for transformers at scale”.
In: arXiv preprint arXiv:2208.07339. 4/19
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• Integer quantization is the mainstream

• LLM.int8()2: mixed precision, hard to implement efficiently on hardware
• SmoothQuant3: Int8, great effort needed to mitigate the outliers

• Block floating-point is a promising choice for LLM Quantization4

• combines the precision of floating-point with the efficiency of integer
• achieves negligible loss under W6A6 without any complex transformation

Towards lower-bit LLM quantization, a novel data format is needed to better fit in
the data distribution of LLM

2Tim Dettmers et al. (2022). “Llm. int8 (): 8-bit matrix multiplication for transformers at scale”.
In: arXiv preprint arXiv:2208.07339.

3Guangxuan Xiao et al. (2023). “Smoothquant: Accurate and efficient post-training
quantization for large language models”. In: Proc. ICML. PMLR, pp. 38087–38099.

4Cheng Zhang et al. (2023). “Revisiting Block-based Quantisation: What is Important for
Sub-8-bit LLM Inference?” In: Proc. EMNLP, pp. 9988–10006. 5/19
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BFP is a special case of floating-point where numbers within a block share a
common exponent.
The data format of BFP includes three parts: shared exponent, private block
mantissa and sign bit.
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When using rounding to nearest scheme, the quantization error of block
floating-point has zero mean and variance σ2 which is defined as56

σ2 =
2−2Lm

12

Nγ∑
i=1

pγi2
2γi , (1)

where Lm is the bit length of the private block mantissa, pγi is the probability mass
function (PMF) of the shared exponents γi (i = 1, 2, ...Nγ). Nγ = 2LE is the number
of available shared exponent levels, where LE is the bit length of shared exponent.
To reduce the quantization error, we can

• increase the bit length of private block mantissa Lm

• decrease the pγi of relatively large shared exponent γi

5Kari Kalliojarvi and Jaakko Astola (1996). “Roundoff errors in block-floating-point systems”.
In: IEEE TSP 44.4, pp. 783–790.

6Zhourui Song, Zhenyu Liu, and Dongsheng Wang (2018). “Computation error analysis of
block floating point arithmetic oriented convolution neural network accelerator design”. In:
Proc. AAAI. vol. 32. 1. 7/19
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Bi-exponent block floating-point (BiE) is the proposed numerical representation.

Different from vanilla BFP, it contains two shared exponents, en for normal part,
and eo for outlier part.

Threshold T is used to distinguish the normal and outlier parts, 1-bit type bit ti
indicates the component belongs to outlier part or normal part.
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T

Data format of BiE
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Given a block X with N elements in FP16, we can obtain its BiE representation X′

as

ti =

{
0 |xi| ≤ T,
1 |xi| > T,

(2)

en = max
|xi|≤T

ei, eo = max
|xi|>T

ei, (3)

m′
i = mi >> (en · (1 − ti) + eo · ti − ei), (4)

X′
i = 2en·(1−ti)+eo·ti · (−1)si · m′

i, (5)
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The rationale is that bi-exponent can isolate the effect of a large shared exponent
on other small-exponent values in the block to reduce the quantization error
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Threshold determination is rather critical before the BiE quantization flow.

We build an offline threshold searching strategy based on Bayesian Optimization.
The search space is defined as:

Ω = {T1,T2, ...,TN} , N = Na + Nw;

Ti ∈ [Plo(X),Phi(X)].
(6)

Plo and Phi are the lower-bound and higher-bound of the percentile. X is the
activations or weights in calibrations.

It is essential to determine the threshold value within the central region of the
magnitude distribution rather than selecting a large or small value to fully utilize
the superiority of bi-exponent.
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BiE systolic array consists of three parts: FP to BiE converter (encoder), processing
elements (PE) for BiE, and decoder (recover to FP).

Compared with fixed point quantization, the encoder and decoder do not involve
costly floating-point multiplication.

• Encoder: two comparator trees are used for shared exponents and type bits
determination

• PE: obtains a partial sum of aligned mantissa products, and the max shared
exponents summation em

• Decoder: includes a leading-zero detector and a shifter to achieve normalization

13/19
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Given two blocks X1 and X2 with N elements in BiE format, the dot product of
them can be formulated as

em = eo1 + eo2 (7)

2em

N−1∑
0

(−1)s1,i
⊕

s2,i(m1,i · m2,i >> (em − e1,i − e2,i)) (8)

where em is the max exponent combination of the two blocks which is determined
by the summation of the two outlier shared exponents eo1 and eo2 , e1,i and e2,i
represent the shared exponent used for the ith element of X1 and X2.

In BiE arithmetic, it mainly involves INT multiplication, INT addition and
shifting, which are all efficient for hardware.

14/19
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Table: BiE’s performance for OPT-30B and OPT-66B on other zero-shot tasks including
multiple choice, commonsense reasoning, etc.. We highlight our 4-bit BiE results that can
achieve nearly lossless quantization performance.

Model Method Config LAMBADA Arc_easy PIQA COPA QNLI SST2 Average↑

OPT-30B

FP16 / 71.45% 70.03% 77.64% 82.00% 51.78% 66.51% 69.90%
SmoothQuant W8A8 71.71% 69.61% 77.75% 84.00% 52.52% 66.63% 70.37%
SmoothQuant W6A6 0.54% 41.29% 57.94% 66.00% 51.44% 58.26% 45.91%

BFP W4A4 61.25% 68.18% 76.28% 85.00% 54.09% 66.51% 68.55%
BiE (Ours) W4A4 70.11% 69.15% 77.26% 85.00% 52.15% 67.66% 70.22%

BFP W3A3 7.45% 56.40% 66.43% 77.00% 50.92% 56.42% 52.44%
BiE (Ours) W3A3 65.11% 68.14% 75.84% 81.00% 52.19% 61.12% 67.23%

OPT-66B

FP16 / 73.96% 71.12% 78.73% 86.00% 52.19% 68.58% 71.76%
SmoothQuant W8A8 73.26% 71.21% 78.35% 86.00% 51.84% 63.19% 70.64%
SmoothQuant W6A6 0.00% 25.29% 53.32% 55.00% 50.67% 51.26% 39.26%

BFP W4A4 63.83% 68.86% 76.66% 86.00% 52.10% 64.68% 68.69%
BiE (Ours) W4A4 72.50% 70.58% 77.26% 85.00% 51.95% 70.07% 71.23%

BFP W3A3 3.22% 36.49% 55.44% 61.00% 51.09% 52.98% 43.37%
BiE (Ours) W3A3 11.97% 38.34% 56.04% 60.00% 49.68% 53.33% 44.89%
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Table: Comparison with different methods and different quantization configurations for
OPT-models on Wikitext2 (Perplexity↓). We highlight our 4-bit BiE results which are
comparable with SmoothQuant W8A8.

Method Config 6.7B 13B 30B 66B

FP16 / 10.64 9.91 9.33 9.12
SmoothQuant W8A8 11.33 12.79 9.35 9.62
SmoothQuant W6A6 13.16 13.75 82.54 3383.21

BFP W4A4 11.22 11.15 9.90 14.16
BiE (Ours) W4A4 10.93 10.39 9.37 9.82

BFP W3A3 14.61 13.85 13.83 137.72
BiE (Ours) W3A3 12.10 11.13 10.01 32.41
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• BiE can be naturally adapted to the numerical distribution characteristics of the
LLMs and achieve negligible loss in 4-bit activations and weights quantization.

• BiE can balance precision and hardware efficiency.

• BiE is not limited to LLM quantization, it can be used in any model with any
distribution.
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THANK YOU!
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