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lpiigelollleid[e]a Graph Injection Attacks (GIA)

modification attack (GMA)

The attacker is able to delete and insert edges
among the existing nodes.

Perturb node classification
S -

The attacker injects new nodes, and insert edges from
the injected nodes to connect the existing nodes.

For example, in social network, it could be difficult for the attacker
injection attack (GIA) to control all the normal users, but it can be easy for the attacker
to create a new account, and then interact with normal users.

(a) GMA vs. GIA

Zou, Xu, et al. (SIGKDD 2021).



Introduction Certified Robustness against Graph Injection Attack (GIA)

A node classifier f 1s certifiably robust
for a given input graph G 1f : we guarantee
that the classifier’s prediction is consistent
within some attack budget B, ;(G):

B, (G) :={G'V,&,X)V =VUV,E =EUE,

X' =XUX,|V|<p,60®) <7,V V)

The attacker can inject:

p malicious nodes, with 7 malicious edges per node.
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p (number of injected nodes)

Robustness Certification: lower bound of the model

accuracy under a given attack powerp and 7.



Node-aware Bi-Smoothing (V. Lai. et al., S&P 2024)
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Figure: Node-aware Bi-smoothing (Y. Lai. et al., S&P 2024).



Sample-wise v.s. Collective Certificate
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Figure 1: While the sample-wise certificate verifies target nodes one by one, our collective certificate
verifies a set of target nodes simultaneously by linear programming.



Our model is inspired by the idea of
Randomized Message-Interception Smoothing (V. Scholten. et. al. NeurIPS 2022).

. Injected node g¢——~ Malicious message

2-layer message
passing GNNs

Class A -> Class B

(Figure adapted from Y. Scholten. et. al. NeurIPS 2022)



Malicious message has probability to be intercepted in the Node-aware Bi-smoothing.

. Injected node g¢—— Malicious message

—— Deleted edge

Intercepted message

2-layer message
passing GNNs

Class A -> Class A

(Figure adapted from Y. Scholten. et. al. NeurIPS 2022)



Let p(E,) denotes the probability that the malicious messages is NOT

intercepted, then we have that the absolute change of prediction probability is
bounded by p(E,).

(Because in the other cases, the attacker can not affect the predictions of f. )

Theorem 1. Given a base GNN classifier f trained on
a graph G and its smoothed classifier g defined in (2), a
testing node v € G and a perturbation range B, .(G), let
E.,, be the event defined in Eq. (4). The absolute change in
predicted probability |p,, ,(G) — p,.,(G")| for all perturbed
graphs G' € B, .(G) is bounded by the probability of the
event Ey:[[puy(G) — poy(G)] < p(Eu)




Then, we know that the prediction is consistent if:
the upper bound of p(E,,) is smaller than half of the probability gap.

Corollary 1. Given a base GNN classifier f trained on
a graph G and its smoothed classifier g, a testing node
v € G and a perturbation range B, . (G), let E, be the
event defined in Eq. (4). We have g,(G") = g,(G) for all
perturbed graphs G' € B, (G) if:

P(Ey) < [poy+(G) — mazysypo,y(G)]/2, | (T)
where y* € ) is the predicted class of g,(G).

Proof. With Theorem 1, we have ¢,(G') = g,(G) if

Pvy* (G) — p(Ey) > mazyxy~pvy(G) + p(Ey), which
is equivalent to p(E,) < [puv,y+ (G) — mazyxypv.y(G)]/2.
[




Collective Certificate Original Problem

B, . (G) : the attacker can inject p malicious nodes, with 7
malicious edges per node.

T : A set of target nodes.

min 'T| — ZH{QU (G') # g.,(G)},

G'eB, - (G
Ep’() veT

st. [V <p,6(0)<T, VeV /

(NP-hard)




Upper-bounding the number of non-robust nodes

Collective Certificate Relaxation

p(E,) : the probability that the malicious messages is not intercepted.

Cy *= Pv,y* (G) - MAXy 2y pv,y(G)-

M =S"Kp(E,) > c,/2},
o TOX > Hp(Ey) = c/2}

~

st. V| <p, 6(0) <, V0 e,
The remaining |T| — M™nodes are certified robust. (NP-hard) /

To solve the problem, we relax the optimization problem into linear programming.

In our paper, we propose two relaxation scheme: Collective-LP1 and Collective-LP2.



Certified ratio and clean accuracy
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Efficiency
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Figure 4: Runtime comparison of LP collective models.



Thank you for your attention!

Yuni Lal



