

Adaptive Group Personalization for Federated Mutual Transfer Learning

Haoqing Xu¹ Dian Shen¹ Meng Wang² Beilun Wang¹ *

¹School of Computer Science and Engineering, Southeast University ²College of Design and Innovation, Tongji University

Motivation: Recovering Learnability Structure in Big Data Applications

- Mutual Transfer Learning^[1]: Each data domain \implies source/target
- **Similar** domains form clusters S_k **Exambility Structure** S

[1] Cheng, Ching-Wei, Xingye Qiao, and Guang Cheng. "Mutual transfer learning for massive data." International Conference on Machine Learning. PMLR, 2020.

Motivation: Bottlenecks of Centralized Mutual Transfer Learning with Large-Scale data

• **Communication Overload**

- TBs of data are collected by clients
- Transferring to server is too costly

Motivation: Bottlenecks of Centralized Mutual Transfer Learning with Large-Scale data

• **Communication Overload**

- TBs of data are collected by clients
- Transferring to server is too costly

• **Privacy Concern**

- Data contains sensitive information
- Leakage may cause serious ethic issues

4

Motivation: Bottlenecks of Centralized Mutual Transfer Learning with Large-Scale data

• **Communication Overload**

- TBs of data are collected by clients
- Transferring to server is too costly

• **Privacy Concern**

- Data contains sensitive information
- Leakage may cause serious ethic issues

• **Federated Mutual Transfer Learning**

- Transfer parameters only
- Overcome the above problems simultaneously

Challenge I: Learnability Heterogeneity

- Common Linear Model $(M$ domains in total): $y_i = X_i \beta + \varepsilon, 1 \leq i \leq M$
	- Parameters are shared among all the domains

- **Global** Parameters: Shared among **all the domains**
- **Heterogeneous** Parameters: Shared in one subgroup $\mathcal{D}_i \in \mathcal{S}_{k_i}$
- Random Effects: Domain-Specific, cannot be transferred

Challenge I: Learnability Heterogeneity

• However, previous methods cannot easily adapt to such task:

7

Challenge II: Concept Drift

- Multiple communication rounds be Long period of time
- Data distribution may change **notaty Concept drift** occurs
	- User preferences change due to new trends
	- Climate slightly changes due to human activities
	- $etc...$

Learnability structure may change over time $\begin{array}{|c|c|c|c|}\hline \hspace{2mm} & & \hspace{2mm} & \hspace{2mm} \hline \hspace{2mm} & & \hspace{2mm} & \hspace{2mm} \$

Challenge II: Concept Drift

• Previous mutual transfer learning focus on stable data

• DiffS^[2] uses a fixed threshold: cannot well adapt to dynamic environment

Challenge II: Concept Drift

• Previous mutual transfer learning focus on stable data

• DiffS^[2] uses a fixed threshold: cannot well adapt to dynamic environment

Solution to Challenge II: Adaptive Threshold Correction under Concept Drift

- Adaptively correct the threshold with current distribution
- **Motivation:** Population $\mathcal{P}_{\|\boldsymbol{\delta}\|^2}(\lambda) = p_{\chi} \chi_q^2(\lambda) + \sum p_{ij} \chi_q'^2(\lambda; \mu_{ij})$
-

Solution to Challenge I: Group Personalization with Learnability Structure Recovery

- **Proposed:** Group Personalization based Mixed Aggregation
- With learnability structure recovered by $\mathcal{S}^r = \Psi\left(\|\boldsymbol{\delta}^r\|^2; \Lambda(\|\boldsymbol{\delta}^r\|)\right)$ Global Parameters: Heterogeneous Parameters:

12

- Accurate learnability structure recovery in Federated framework \odot
- Robustness against Concept Drift with Tuning-Free Solution \odot

- Accurate learnability structure recovery in Federated framework \odot
- Robustness against Concept Drift with Tuning-Free Solution \odot

- Accurate learnability structure recovery in Federated framework \odot
- Robustness against Concept Drift with Tuning-Free Solution \odot

- Accurate learnability structure recovery in Federated framework \odot
- Robustness against Concept Drift with Tuning-Free Solution \odot

- Accurate learnability structure recovery in Federated framework \odot
- Robustness against Concept Drift with Tuning-Free Solution \odot

 $\|\mathbf{x}^r\|^2$

- Accurate learnability structure recovery in Federated framework \odot
- Robustness against Concept Drift with Tuning-Free Solution \odot

- Accurate learnability structure recovery in Federated framework \odot
- Robustness against Concept Drift with Tuning-Free Solution \odot

- Accurate learnability structure recovery in Federated framework \odot
- Robustness against Concept Drift with Tuning-Free Solution \odot

- Accurate learnability structure recovery in Federated framework \odot
- Robustness against Concept Drift with Tuning-Free Solution \odot

Theoretical Results

• **AdaGrP** is able to perfectly recover the learnability structure at every time step:

Theorem 4.5. Assume Assumption 3.1 holds and $\lambda_{-} < \lambda^* < \lambda_{+}$. Under Condition 3, AdaGrP satisfies that $\Psi(\theta^r; \tilde{\lambda}(\theta^r)) = \Psi(\theta^r; \lambda^*), \forall r \in [R]$. With sufficient local updates that $t > \frac{2 \ln C_{\lambda}/C_M}{\ln (1-2n\omega)}$, $\Psi(\boldsymbol{\theta}^r; \tilde{\lambda}(\boldsymbol{\theta}^r)) = \mathcal{S}^{(\tau)}, \forall r \in [R]$, where $C_{\lambda} = \min(\lambda_+ - \lambda^*, \lambda^* - \lambda_-)$.

• **AdaGrP** relaxes the condition of perfect recovery:

Domain Difference

Theoretical Results

• **AdaGrP** is able to perfectly recover the learnability structure at every time step:

Theorem 4.5. Assume Assumption 3.1 holds and $\lambda_{-} < \lambda^* < \lambda_{+}$. Under Condition 3, AdaGrP satisfies that $\Psi(\theta^r; \tilde{\lambda}(\theta^r)) = \Psi(\theta^r; \lambda^*), \forall r \in [R]$. With sufficient local updates that $t > \frac{2 \ln C_{\lambda}/C_M}{\ln (1-2n\omega)}$, $\Psi(\boldsymbol{\theta}^r; \tilde{\lambda}(\boldsymbol{\theta}^r)) = \mathcal{S}^{(\tau)}, \forall r \in [R]$, where $C_{\lambda} = \min(\lambda_+ - \lambda^*, \lambda^* - \lambda_-)$.

• **AdaGrP** relaxes the condition of perfect recovery:

Domain Difference

Results: Synthetic Data

• **AdaGrP** has the best estimation under concept drift environment

• **AdaGrP** achieves the most stable performance while tuning-free 24

Results: NOAA nClimDiv Database^[3]

• Real-world task: NOAA nClimDiv Temperature Prediction

- Data from 344 domains, 25 years per time step, 5 time step in total
- **AdaGrP** estimates more properly based on IECC Climate Zone

Thank you for your attention!

- **Haoqing Xu** (xuhaoqing@seu.edu.com)
- Dian Shen
- Meng Wang
- Beilun Wang* (beilun@seu.edu.cn)

• Poster: Hall C 4-9 $\#2210$ Wed 24 Jul 11:30 a.m. -1 p.m.

· icml.cc/virtual/2024/poster/34610

26