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Motivation: Recovering Learnability Structure in
Big Data Applications

- Mutual Transfer Learning!!l: Each data domain m=) source/target
- Similar domains form clusters Si =) Learnability Structure §
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[1] Cheng, Ching-Wei, Xingye Qiao, and Guang Cheng. "Mutual transfer learning for massive data." /nternational Conference on Machine Learning. PMLR, 2020.




Motivation: Bottlenecks of Centralized Mutual
Transfer Learning with Large-Scale data

- Communication Overload

* TBs of data are collected by clients
* Transferring to server is too costly
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Motivation: Bottlenecks of Centralized Mutual
Transfer Learning with Large-Scale data

- Communication Overload

* TBs of data are collected by clients
* Transferring to server is too costly

- Privacy Concern

- Data contains sensitive information
* Leakage may cause serious ethic issues

- Federated Mutual Transfer Learning

* Transfer parameters only
- Overcome the above problems simultaneously
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Challenge I: Learnability Heterogeneity

- Common Linear Model (M domains in total):

- Parameters are shared among all the domains

- Mutual Transfer Learning: Random Effects
Yy, = XiB+ Zi(ag, +u;) +e,1<i< M

Global Parameters Heterogeneous Parameters

* Global Parameters: Shared among all the domains

- Heterogeneous Parameters: Shared in one subgroup [Di € Ski]




Challenge I: Learnability Heterogeneity

- Mutual Transfer Learning: Random Effects
Yy, = XiB+ Zi(ag, +tu;) +e,1<i<M

Global Parameters Heterogeneous Parameters

- However, previous methods cannot easily adapt to such task:

Previous Learnability Distributed
Methods Structure Recovery Learning
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Challenge Il: Concept Drift

- Multiple communication rounds m=) Long period of time

- Data distribution may change m==) Concept drift occurs
* User preferences change due to new trends
* Climate slightly changes due to human activities
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> Learnability structure may change over time >




Challenge Il: Concept Drift

- Previous mutual transfer learning focus on stable data
- DiffSI2l uses a fixed threshold: cannot well adapt to dynamic environment
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2] Xu, Haoqing, Meng Wang, and Beilun Wang. "A difference standardization method for mutual transfer learning." /nternational Conference on Machine Learning. PMLR, 2022,
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Challenge Il: Concept Drift

- Previous mutual transfer learning focus on stable data
- DiffSI2l uses a fixed threshold: cannot well adapt to dynamic environment

Fixed Threshold A\ /False Positives! ®
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' Learnablllty Structure

2] Xu, Haoqing, Meng Wang, and Beilun Wang. "A difference standardization method for mutual transfer learning." /nternational Conference on Machine Learning. PMLR, 2022,
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Solution to Challenge |I: Adaptive Threshold
Correction under Concept Drift

- Adaptively correct the threshold with current distribution
- Motivation: Population Pjsj2(A) = py o (A) + Y pix (A pe,)

1<7J
- Proposed: Check the optimal threshold cona’/'t/'on
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Solution to Challenge |: Group Personalization
with Learnability Structure Recovery

- Proposed: Group Personalization based Mixed Aggregation
- With learnability structure recovered by 8" = W (||8"||*; A(||67|]))

Global Parameters: Heterogeneous Parameters:
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Proposed: Adaptive Group Personalization for
Federated Mutual Transfer Learning (AdaGrP)

- Accurate learnability structure recovery in Federated framework ©

- Robustness against Concept Drift with Tuning-Free Solution @
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Proposed: Adaptive Group Personalization for
Federated Mutual Transfer Learning (AdaGrP)

- Accurate learnability structure recovery in Federated framework ©

- Robustness against Concept Drift with Tuning-Free Solution @
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Proposed: Adaptive Group Personalization for
Federated Mutual Transfer Learning (AdaGrP)

- Accurate learnability structure recovery in Federated framework ©

- Robustness against Concept Drift with Tuning-Free Solution @
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Proposed: Adaptive Group Personalization for
Federated Mutual Transfer Learning (AdaGrP)

- Accurate learnability structure recovery in Federated framework ©

- Robustness against Concept Drift with Tuning-Free Solution @
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Proposed: Adaptive Group Personalization for
Federated Mutual Transfer Learning (AdaGrP)

- Accurate learnability structure recovery in Federated framework ©

- Robustness against Concept Drift with Tuning-Free Solution @
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Proposed: Adaptive Group Personalization for
Federated Mutual Transfer Learning (AdaGrP)

- Accurate learnability structure recovery in Federated framework ©

- Robustness against Concept Drift with Tuning-Free Solution @
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Proposed: Adaptive Group Personalization for
Federated Mutual Transfer Learning (AdaGrP)

- Accurate learnability structure recovery in Federated framework ©

- Robustness against Concept Drift with Tuning-Free Solution @
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Proposed: Adaptive Group Personalization for
Federated Mutual Transfer Learning (AdaGrP)

- Accurate learnability structure recovery in Federated framework ©

- Robustness against Concept Drift with Tuning-Free Solution @
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Proposed: Adaptive Group Personalization for
Federated Mutual Transfer Learning (AdaGrP)

- Accurate learnability structure recovery in Federated framework ©

- Robustness against Concept Drift with Tuning-Free Solution @
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Theoretical Results

- AdaGrP is able to perfectly recover the learnability structure at
every time step:
Theorem 4.5. Assume Assumption 3.1 holds and \_ < \* < .. Under Condition 3,

AdaGrP satisfies that U(0"; X(0")) = U(0"; \*),Vr € [R]. With sufficient local updates

that t > f“}fﬂcﬂf; T(0";M(07)) = S, Vr € [R], where Cy, = min(\; — A¥, \¥ — A_).

- AdaGrP relaxes the condition of perfect recovery:
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Theoretical Results

- AdaGrP is able to perfectly recover the learnability structure at
every time step:

Theorem 4.5. Assume Assumption 3.1 holds and \_ < \* < .. Under Condition 3,
AdaGrP satisfies that V(0" ; \(0")) = V(0"; \*),Vr € [R]. With sufficient local updates
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Results: Synthetic Data

Learnability Structure
Recovery Performance

Parameter Estimation
Error

Prediction Error

NMI

RMSE

Error

AdaGrP AdaGrP (w/o) -8 - FeSEM IFCA  --¢- FedDrift
1.0 7 H
3 «® ™~ /
’ ¥ v A X :
\ \[44 /i N o
o5l @ __o\ R} ‘ |74 £.3{160] ’8 w
f‘,'*.,u.otﬂ?.‘,féf-ti;\éf.""’ d
IR i S
146 '-_. ¢ \ \‘ ‘ I .Q‘ : . ’ I .Q‘ "’\{-_ :(A%
AR LY ‘ b‘ 3'&“0 \,““,\: 3T e
L 2o LT |
01, & e I “E ]l - - 512
- s |A 4 o \ R 8 X
. 3 4 ‘ x 4 B ‘\ [. v |y .
Of'.‘s’,"f\‘t,. "\s? Ry A?.H‘{“‘/ |’(.\£f."sf.’ﬂ
100 200 300 20 40 60 &8 200 600 1000
#Clients M Dimension p+q  Sample size n #Subgroups K

- AdaGrP has the best estimation under concept drift environment

- AdaGrP achieves the most stable performance while tuning-free




Results: NOAA nClimDiv Database!®:

- Real-world task: NOAA nClimDiv Temperature Prediction
- Data from 344 domains, 25 years per time step, 5 time step in total

- AdaGrP estimates more properly based on I[ECC Climate Zone
* FedDrift: Sensitive Hyper-parameters & Bad Learnability Recovery
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[3] Vose, Russell S., et al. "NOAA Monthly US Climate Divisional Database (NClimDiv)." NOAA National Climatic Data Center, 2014. d0i:10.7289/V5M32STR
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