

Adaptive Group Personalization for Federated Mutual Transfer Learning

Haoqing Xu¹ Dian Shen¹ Meng Wang² Beilun Wang¹*

¹School of Computer Science and Engineering, Southeast University ²College of Design and Innovation, Tongji University

Motivation: Recovering Learnability Structure in Big Data Applications

- Mutual Transfer Learning^[1]: Each data domain **b** source/target
- Similar domains form clusters $\mathcal{S}_k \longrightarrow$ Learnability Structure \mathcal{S}

[1] Cheng, Ching-Wei, Xingye Qiao, and Guang Cheng. "Mutual transfer learning for massive data." International Conference on Machine Learning. PMLR, 2020.

Motivation: Bottlenecks of Centralized Mutual Transfer Learning with Large-Scale data

Communication Overload

- TBs of data are collected by clients
- Transferring to server is too costly

Motivation: Bottlenecks of Centralized Mutual Transfer Learning with Large-Scale data

Communication Overload

- TBs of data are collected by clients
- Transferring to server is too costly

Privacy Concern

- Data contains sensitive information
- Leakage may cause serious ethic issues

Motivation: Bottlenecks of Centralized Mutual Transfer Learning with Large-Scale data

Communication Overload

- TBs of data are collected by clients
- Transferring to server is too costly

Privacy Concern

- Data contains sensitive information
- Leakage may cause serious ethic issues

• Federated Mutual Transfer Learning

- Transfer parameters only
- Overcome the above problems simultaneously

Challenge I: Learnability Heterogeneity

• Common Linear Model (M domains in total): $m{y}_i = m{X}_i m{eta} + m{arepsilon}, 1 \leq i \leq M$

• Parameters are shared among all the domains

- Global Parameters: Shared among all the domains
- Heterogeneous Parameters: Shared in one subgroup $\left| \mathcal{D}_i \in \mathcal{S}_{k_i} \right|$
- Random Effects: Domain-Specific, cannot be transferred

Challenge I: Learnability Heterogeneity

• However, previous methods cannot easily adapt to such task:

Previous Methods	Learnability Structure Recovery	Distributed Learning
Single-model FL	\bigotimes	\odot
Centralized MTL	\bigotimes	\bigotimes
Goal	$\overline{\mathbf{O}}$	\bigcirc

Challenge II: Concept Drift

- Multiple communication rounds blog period of time
- Data distribution may change Concept drift occurs
 - User preferences change due to new trends
 - Climate slightly changes due to human activities
 - etc...

Learnability structure may change over time

Challenge II: Concept Drift

• Previous mutual transfer learning focus on stable data

• DiffS^[2] uses a fixed threshold: cannot well adapt to dynamic environment

Challenge II: Concept Drift

• Previous mutual transfer learning focus on stable data

• DiffS^[2] uses a fixed threshold: cannot well adapt to dynamic environment

10

Solution to Challenge II: Adaptive Threshold Correction under Concept Drift

- Adaptively correct the threshold with current distribution
- Motivation: Population $\mathcal{P}_{\|\boldsymbol{\delta}\|^2}(\lambda) = p_{\chi}\chi_q^2(\lambda) + \sum p_{ij}\chi_q'^2(\lambda;\boldsymbol{\mu}_{ij})$
- **Proposed:** Check the *optimal threshold condition*

Solution to Challenge I: Group Personalization with Learnability Structure Recovery

- Proposed: Group Personalization based Mixed Aggregation
- With learnability structure recovered by $S^r = \Psi \left(\| \delta^r \|^2; \Lambda(\| \delta^r \|) \right)$ Global Parameters: Heterogeneous Parameters:

- Accurate learnability structure recovery in Federated framework
- Robustness against Concept Drift with Tuning-Free Solution

13

- Accurate learnability structure recovery in Federated framework
- Robustness against Concept Drift with Tuning-Free Solution

- Accurate learnability structure recovery in Federated framework
- Robustness against Concept Drift with Tuning-Free Solution

- Accurate learnability structure recovery in Federated framework
- Robustness against Concept Drift with Tuning-Free Solution

- Accurate learnability structure recovery in Federated framework
- Robustness against Concept Drift with Tuning-Free Solution

 $\Lambda(\|\boldsymbol{\delta}^r\|^2)$

- Accurate learnability structure recovery in Federated framework
- Robustness against Concept Drift with Tuning-Free Solution

- Accurate learnability structure recovery in Federated framework
- Robustness against Concept Drift with Tuning-Free Solution

- Accurate learnability structure recovery in Federated framework
- Robustness against Concept Drift with Tuning-Free Solution

- Accurate learnability structure recovery in Federated framework
- Robustness against Concept Drift with Tuning-Free Solution

Theoretical Results

• AdaGrP is able to perfectly recover the learnability structure at every time step:

Theorem 4.5. Assume Assumption 3.1 holds and $\lambda_{-} < \lambda^{*} < \lambda_{+}$. Under Condition 3, AdaGrP satisfies that $\Psi(\boldsymbol{\theta}^{r}; \widetilde{\lambda}(\boldsymbol{\theta}^{r})) = \Psi(\boldsymbol{\theta}^{r}; \lambda^{*}), \forall r \in [R]$. With sufficient local updates that $t > \frac{2 \ln C_{\lambda}/C_{M}}{\ln (1-2\eta\omega)}, \Psi(\boldsymbol{\theta}^{r}; \widetilde{\lambda}(\boldsymbol{\theta}^{r})) = S^{(\tau)}, \forall r \in [R], where C_{\lambda} = \min(\lambda_{+} - \lambda^{*}, \lambda^{*} - \lambda_{-}).$

• AdaGrP relaxes the condition of perfect recovery:

Standardized Domain Difference

Theoretical Results

• AdaGrP is able to perfectly recover the learnability structure at every time step:

Theorem 4.5. Assume Assumption 3.1 holds and $\lambda_{-} < \lambda^{*} < \lambda_{+}$. Under Condition 3, AdaGrP satisfies that $\Psi(\boldsymbol{\theta}^{r}; \widetilde{\lambda}(\boldsymbol{\theta}^{r})) = \Psi(\boldsymbol{\theta}^{r}; \lambda^{*}), \forall r \in [R]$. With sufficient local updates that $t > \frac{2 \ln C_{\lambda}/C_{M}}{\ln (1-2\eta\omega)}, \Psi(\boldsymbol{\theta}^{r}; \widetilde{\lambda}(\boldsymbol{\theta}^{r})) = S^{(\tau)}, \forall r \in [R], where C_{\lambda} = \min(\lambda_{+} - \lambda^{*}, \lambda^{*} - \lambda_{-}).$

• AdaGrP relaxes the condition of perfect recovery:

Standardized Domain Difference

Results: Synthetic Data

AdaGrP has the best estimation under concept drift environment

• AdaGrP achieves the most stable performance while tuning-free

Results: NOAA nClimDiv Database^[3]

• Real-world task: NOAA nClimDiv Temperature Prediction

- Data from 344 domains, 25 years per time step, 5 time step in total
- AdaGrP estimates more properly based on IECC Climate Zone

• FedDrift: Sensitive Hyper-parameters & Bad Learnability Recovery **CONUS Climate Divisions** AdaGrP ($\tau = 1$) AdaGrP ($\tau = 2$) AdaGrP ($\tau = 3$) AdaGrP ($\tau = 4$) AdaGrP ($\tau = 5$) **Climate Divisions** AdaGrP (w/o) ($\tau = 1$) AdaGrP (w/o) ($\tau = 2$) AdaGrP (w/o) ($\tau = 3$) AdaGrP (w/o) ($\tau = 4$) AdaGrP (w/o) ($\tau = 5$) (Domains) on Map AdaGrP (w/o): without Threshold Correction FedDrift ($\tau = 1$) IECC Climate Zone Map FedDrift ($\tau = 2$) FedDrift ($\tau = 3, 4, 5$)

25

[3] Vose, Russell S., et al. "NOAA Monthly US Climate Divisional Database (NClimDiv)." NOAA National Climatic Data Center, 2014. doi:10.7289/V5M32STR

Thank you for your attention!

- Haoqing Xu (xuhaoqing@seu.edu.com)
- Dian Shen
- Meng Wang
- Beilun Wang* (<u>beilun@seu.edu.cn</u>)

- Poster: Hall C 4-9 #2210 Wed 24 Jul 11:30 a.m. 1 p.m.
 - icml.cc/virtual/2024/poster/34610

26