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Motivation: Recovering Learnability Structure in
Big Data Applications

• Mutual Transfer Learning[1]: Each data domain       source/target

• Similar domains form clusters           Learnability Structure
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[1] Cheng, Ching-Wei, Xingye Qiao, and Guang Cheng. "Mutual transfer learning for massive data." International Conference on Machine Learning. PMLR, 2020.
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Key to understanding data
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Motivation: Bottlenecks of Centralized Mutual
Transfer Learning with Large-Scale data

• Communication Overload
 TBs of data are collected by clients
 Transferring to server is too costly
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Motivation: Bottlenecks of Centralized Mutual
Transfer Learning with Large-Scale data

• Communication Overload
 TBs of data are collected by clients
 Transferring to server is too costly

• Privacy Concern
 Data contains sensitive information
 Leakage may cause serious ethic issues
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Motivation: Bottlenecks of Centralized Mutual
Transfer Learning with Large-Scale data

• Communication Overload
 TBs of data are collected by clients
 Transferring to server is too costly

• Privacy Concern
 Data contains sensitive information
 Leakage may cause serious ethic issues

• Federated Mutual Transfer Learning
 Transfer parameters only
 Overcome the above problems simultaneously
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Challenge I: Learnability Heterogeneity

• Common Linear Model (    domains in total):

 Parameters are shared among all the domains

• Mutual Transfer Learning:

 Global Parameters: Shared among all the domains
 Heterogeneous Parameters: Shared in one subgroup
 Random Effects: Domain-Specific, cannot be transferred
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Challenge I: Learnability Heterogeneity

• Mutual Transfer Learning:

• However, previous methods cannot easily adapt to such task:
Previous 
Methods

Learnability 
Structure Recovery

Distributed
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Single-model
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Centralized
MTL

Goal
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Challenge II: Concept Drift

• Multiple communication rounds Long period of time

• Data distribution may change Concept drift occurs
 User preferences change due to new trends
 Climate slightly changes due to human activities
 etc…
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Learnability structure may change over time



Challenge II: Concept Drift

• Previous mutual transfer learning focus on stable data
 DiffS[2] uses a fixed threshold: cannot well adapt to dynamic environment

9
[2] Xu, Haoqing, Meng Wang, and Beilun Wang. "A difference standardization method for mutual transfer learning." International Conference on Machine Learning. PMLR, 2022.
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Challenge II: Concept Drift

• Previous mutual transfer learning focus on stable data
 DiffS[2] uses a fixed threshold: cannot well adapt to dynamic environment
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[2] Xu, Haoqing, Meng Wang, and Beilun Wang. "A difference standardization method for mutual transfer learning." International Conference on Machine Learning. PMLR, 2022.
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Solution to Challenge II: Adaptive Threshold
Correction under Concept Drift

• Adaptively correct the threshold with current distribution

• Motivation: Population

• Proposed: Check the optimal threshold condition

11Standardized
Domain Difference

Adaptive Threshold Correction Learnability
Structure



Solution to Challenge I: Group Personalization
with Learnability Structure Recovery

• Proposed: Group Personalization based Mixed Aggregation

• With learnability structure recovered by 

12

Clients

Global Parameters: Heterogeneous Parameters:

Global/Group-wise
Aggregation



Proposed: Adaptive Group Personalization for 
Federated Mutual Transfer Learning (AdaGrP)

• Accurate learnability structure recovery in Federated framework

• Robustness against Concept Drift with Tuning-Free Solution
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Proposed: Adaptive Group Personalization for 
Federated Mutual Transfer Learning (AdaGrP)

• Accurate learnability structure recovery in Federated framework

• Robustness against Concept Drift with Tuning-Free Solution
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Proposed: Adaptive Group Personalization for 
Federated Mutual Transfer Learning (AdaGrP)

• Accurate learnability structure recovery in Federated framework

• Robustness against Concept Drift with Tuning-Free Solution
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Proposed: Adaptive Group Personalization for 
Federated Mutual Transfer Learning (AdaGrP)

• Accurate learnability structure recovery in Federated framework

• Robustness against Concept Drift with Tuning-Free Solution
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Proposed: Adaptive Group Personalization for 
Federated Mutual Transfer Learning (AdaGrP)

• Accurate learnability structure recovery in Federated framework

• Robustness against Concept Drift with Tuning-Free Solution
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Proposed: Adaptive Group Personalization for 
Federated Mutual Transfer Learning (AdaGrP)

• Accurate learnability structure recovery in Federated framework

• Robustness against Concept Drift with Tuning-Free Solution
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Proposed: Adaptive Group Personalization for 
Federated Mutual Transfer Learning (AdaGrP)

• Accurate learnability structure recovery in Federated framework

• Robustness against Concept Drift with Tuning-Free Solution
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Proposed: Adaptive Group Personalization for 
Federated Mutual Transfer Learning (AdaGrP)

• Accurate learnability structure recovery in Federated framework

• Robustness against Concept Drift with Tuning-Free Solution
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Proposed: Adaptive Group Personalization for 
Federated Mutual Transfer Learning (AdaGrP)

• Accurate learnability structure recovery in Federated framework

• Robustness against Concept Drift with Tuning-Free Solution

21

Server Clients

Broadcast

rounds

Estimation at



Theoretical Results

• AdaGrP is able to perfectly recover the learnability structure at
every time step:

• AdaGrP relaxes the condition of perfect recovery:
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Theoretical Results

• AdaGrP is able to perfectly recover the learnability structure at
every time step:

• AdaGrP relaxes the condition of perfect recovery:
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Results: Synthetic Data

• AdaGrP has the best estimation under concept drift environment

• AdaGrP achieves the most stable performance while tuning-free 24

Learnability Structure 
Recovery Performance

Parameter Estimation 
Error

Prediction Error



Results: NOAA nClimDiv Database[3]

• Real-world task: NOAA nClimDiv Temperature Prediction
 Data from 344 domains, 25 years per time step, 5 time step in total

• AdaGrP estimates more properly based on IECC Climate Zone
 FedDrift: Sensitive Hyper-parameters & Bad Learnability Recovery
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[3] Vose, Russell S., et al. "NOAA Monthly US Climate Divisional Database (NClimDiv)." NOAA National Climatic Data Center, 2014. doi:10.7289/V5M32STR
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Thank you for your attention!

• Haoqing Xu (xuhaoqing@seu.edu.com)

• Dian Shen

• Meng Wang

• Beilun Wang* (beilun@seu.edu.cn) 

• Poster: Hall C 4-9 #2210 Wed 24 Jul 11:30 a.m. — 1 p.m.
 icml.cc/virtual/2024/poster/34610
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