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Abstract
The best performing Binary Neural Networks
(BNNs) are usually attained using Adam optimiza-
tion and its multi-step training variants (Rastegari
et al., 2016; Liu et al., 2020). However, to the
best of our knowledge, few studies explore the
fundamental reasons why Adam is superior to
other optimizers like SGD for BNN optimization
or provide analytical explanations that support
specific training strategies. To address this, in
this paper we first investigate the trajectories of
gradients and weights in BNNs during the train-
ing process. We show the regularization effect
of second-order momentum in Adam is crucial
to revitalize the weights that are dead due to
the activation saturation in BNNs. We find that
Adam, through its adaptive learning rate strat-
egy, is better equipped to handle the rugged loss
surface of BNNs and reaches a better optimum
with higher generalization ability. Furthermore,
we inspect the intriguing role of the real-valued
weights in binary networks, and reveal the ef-
fect of weight decay on the stability and slug-
gishness of BNN optimization. Through exten-
sive experiments and analysis, we derive a simple
training scheme, building on existing Adam-based
optimization, which achieves 70.5% top-1 accu-
racy on the ImageNet dataset using the same ar-
chitecture as the state-of-the-art ReActNet (Liu
et al., 2020) while achieving 1.1% higher accu-
racy. Code and models are available at https:
//github.com/liuzechun/AdamBNN.

1. Introduction
Binary Neural Networks (BNNs) have gained increasing
attention in recent years due to the high compression ra-
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(a) real networks (b) binary networks
Figure 1. The actual optimization landscape from real-valued and
binary networks with the same architecture (ResNet-18). We
follow the method in (Li et al., 2018) to plot the landscape.

tio (Rastegari et al., 2016) and the potential of being accel-
erated with logic computation on hardware (Zhang et al.,
2019). Their applications range from supervised learning,
e.g., classification (Courbariaux et al., 2016), segmenta-
tion (Zhuang et al., 2019), pose estimation (Bulat et al.,
2019) to the self-supervised learning (Shen et al., 2021).

Despite the high compression ratio of BNNs, the discrete na-
ture of the binary weights and activations poses a challenge
for its optimization. It is widely known that conventional
deep neural networks rely heavily on the ability to find good
optima in a highly non-convex optimizing space. Different
from real-valued neural networks, binary neural networks
restrict the weights and activations to discrete values (-1,
+1), which naturally, will limit the representational capacity
of the model and further result in disparate optimization
landscapes compared to real-valued ones. As illustrated
in Figure 1, BNNs are more chaotic and difficult for op-
timization with numerous local minima compared to real-
valued networks. These properties differentiate BNNs from
real-valued networks and impact the optimal optimizer and
training strategy design.

Since Courbariaux et al. (Courbariaux et al., 2016) adopted
Adam as the optimizer for BNNs, multiple researchers in-
dependently observed that better performance could be at-
tained by Adam optimization for BNNs (Bethge et al., 2020;
Liu et al., 2020; Brais Martinez, 2020). However, few of
these works have analyzed the reasons behind Adam’s su-
perior performance over other methods, especially the com-
monly used stochastic gradient descent (SGD) (Robbins &
Monro, 1951) with first momentum.

ar
X

iv
:2

10
6.

11
30

9v
1 

 [c
s.L

G
]  

21
 Ju

n 
20

21

How Do Adam and Training Strategies Help BNNs Optimization?

Gradient: [0,0]

Gradient: [0,1]
SGD
optimizer
Adam
optimizer

Y

X

Y

XX

Y

Gradient: [1,0]

Gradient: [1,1]

X

Y

(a) (b) (c) (d)
Figure 6. The loss landscape visualization of a network constructed with the summation of two binary nodes. (a) the loss surface of the
binary network in the forward pass, binarization functions sign(x) discretized the landscape, (b) the loss surface for actual optimization
after using the derivative of clip(�1, x, 1) in approximating the derivative of sign(x), (c) the comparison between using SGD optimizer
and Adam optimizer in conquering the zero gradient local minima, (d) the top view of the actual optimization trajectory.

61.49% top-1 accuracy, comparing to 58.98% of SGD in
Figure 7 (b) with a consistent setting imposed on both ex-
periments in terms of hyper-parameters and network struc-
tures. Furthermore, we investigate the weight distribution
in Figure 7 of final models and obtain some interesting
discoveries. We find that the real-valued latent weights of
better-performing models usually emerge to three peaks,
one is around zero and the other two are beyond -1 and 1.
For those poorly optimized models with SGD, the distribu-
tions of real-valued weights only contain one peak center-
ing around zero. The physical significance of real-valued
weights indicates the degree of how easy or difficult the
corresponding binary weights can switch their signs (-1 or
+1) to the opposite direction. If the real-valued weights are
close to the central boundary (0), it will be simple for them
to fall or bias to -1 or +1 through a few steps of gradient
updating, making the whole network unstable. Thus, it is
not far-fetched that real-valued weights can be regarded as
the confidence of a binary value to be -1 or +1, as also being
mentioned in (Helwegen et al., 2019). From this perspective,
the weights learned by Adam are definitely more confident
than those learned by SGD, which consistently verifies the
conclusion that Adam is a better optimizer to use for binary
neural networks.

3.3. Metrics for Understanding BNN Optimization

Given the superiority of Adam over SGD, we take this find-
ing further and investigate the training strategy for BNNs.
Based on the intriguing fact that the BNN optimization re-
lies on real-value weights for gradient accumulation and
their signs for loss computation, BNN optimization is in-
tractable compared to real-valued networks. Thus for better
revealing the mechanism of the perplexing BNN training,
we propose two metrics to depict the training process and
further find that the weight decay added on the real-valued
latent weight plays a non-negligible role in controlling the
binary weights evolving.

3.3.1. WEIGHT DECAY IN BNN OPTIMIZATION

In a real-valued neural network, weight decay is usually
used to regularize the real-valued weights from growing too
large, which prevents over-fitting and helps to improve the
generalization ability (Krogh & Hertz, 1992).

However, for a binary neural network, the effect of weight
decay is less straightforward. As the absolute values of
weights in BNNs are restricted to -1 and +1, the weight
decay is no longer effective to prevent the binary weights
from being extremely large. Moreover, in a binary neural
network, the weight decay is applied to the real-valued la-
tent weights. Recall that in Section 3.2.4, the magnitude
of real-valued weights in BNNs can be viewed as the con-

fidence of corresponding binary weights to their current
values. Adding weight decay on these real-valued weights
is actually attempting to decay the confidence score.

From this perspective, the weight decay will lead to a
dilemma in binary network optimization between the stabil-
ity and the dependency of weight initialization. With high
weight decay, the magnitude of the latent weights is regular-
ized to be small, making the corresponding binary weights
“less confident” in their signs, and further prone to switch
their signs frequently, i.e., reducing the stability in optimiza-
tion. With smaller or even zero weight decay, the latent

weights tend to move towards -1 and +1, the corresponding
binary weights will be more stable to stay in the current
status. However, this is a trade-off since larger gradients
are required to promote the weights to switch their signs in
order to overcome the “dead” parameters issue. That is to
say, with small or zero weight decay, the performance of a
network will be influenced by initialization critically.

3.3.2. QUANTIFICATION METRICS

To quantify these two effects (network stability and initial-
ization dependency), we introduce two metrics: the flip-flop
(FF) ratio for measuring the optimization stability, and the
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Table 2. Comparison with state-of-the-art methods that binarize
both weights and activations.

Networks Top1 Top5
Acc % Acc %

BNNs (Courbariaux et al., 2016) 42.2 67.1
ABC-Net (Lin et al., 2017) 42.7 67.6

DoReFa-Net (Zhou et al., 2016) 43.6 -
XNOR-ResNet-18 (Rastegari et al., 2016) 51.2 69.3

Bi-RealNet-18 (Liu et al., 2018b) 56.4 79.5
CI-BCNN-18 (Wang et al., 2019) 59.9 84.2

MoBiNet (Phan et al., 2020a) 54.4 77.5
BinarizeMobileNet (Phan et al., 2020b) 51.1 74.2

PCNN (Gu et al., 2019) 57.3 80.0
StrongBaseline (Brais Martinez, 2020) 60.9 83.0

Real-to-Binary Net (Brais Martinez, 2020) 65.4 86.2
MeliusNet29 (Bethge et al., 2020) 65.8 –

ReActNet ResNet-based (Liu et al., 2020) 65.5 86.1
ReActNet-A (Liu et al., 2020) 69.4 88.6

StrongBaseline + Our training strategy 63.2 84.0
ReActNet-A + Our training strategy 70.5 89.1

Table 3. Comparison of computational cost between the state-of-
the-art methods and our method.

Networks BOPs
⇥109

FLOPs
⇥108

OPs
⇥108

XNOR-ResNet-18 (Rastegari et al., 2016) 1.70 1.41 1.67
Bi-RealNet-18 (Liu et al., 2018b) 1.68 1.39 1.63
CI-BCNN-18 (Wang et al., 2019) – – 1.63
MeliusNet29 (Bethge et al., 2020) 5.47 1.29 2.14

StrongBaseline (Brais Martinez, 2020) 1.68 1.54 1.63
Real-to-Binary (Brais Martinez, 2020) 1.68 1.56 1.83

ReActNet-A (Liu et al., 2020) 4.82 0.12 0.87
StrongBaseline + Our training strategy 1.68 1.54 1.80

ReActNet-A + Our training strategy 4.82 0.12 0.87

4. Experiments
4.1. Dataset and Implementation Details

All the analytical experiments are conducted on the Ima-
geNet 2012 classification dataset (Russakovsky et al., 2015).
We train the network for 600K iterations with batch size
set to 512. The initial learning rate is set to 0.1 for SGD
and 0.0025 for Adam, with linear learning rate decay. We
also adopt the same data augmentation in (Brais Martinez,
2020) and the same knowledge distillation scheme as (Liu
et al., 2020) for training ReActNet structures. For a fair com-
parison of optimization effects, we use the same network
structures as StrongBaseline in (Brais Martinez, 2020) for
all the illustrative experiments and compared our training
strategy on two state-of-the-art network structures including
StrongBaseline, and ReActNet (Liu et al., 2020).

4.2. Comparison with State-of-the-Arts
Our training strategies bring constant improvements to both
structures. As shown in Table 2. With the same network

Table 4. Comparison of different binarization orders in two-step
training on the StrongBaseline (Brais Martinez, 2020) structure.

Top1 Acc Top5 Acc
first binarize weight 60.17 82.05then binarize activation (BWBA)

first binarize activation 63.23 84.02then binarize weight (BABW)

Table 5. Comparison between Adam and other adaptive methods.

Adam RMS-
prop

Ada-
Grad

Ada-
Delta

AMS-
Grad

Ada-
Bound

Top1-acc 61.49 57.90 50.74 56.90 60.71 58.13
Top5-acc 83.09 79.93 74.62 79.47 82.44 80.58

architecture, we achieve 2.3% higher accuracy than the
StrongBaseline (Brais Martinez, 2020). When applying our
training strategy to the state-of-the-art ReActNet (Liu et al.,
2020), it further brings 1.1% enhancement and achieves
70.5% top-1 accuracy, surpassing all previous BNN models.

Our training strategy will not increase the OPs as we
use identical structures as the baselines: StrongBase-
line (Brais Martinez, 2020) and ReActNet (Liu et al., 2020).
Table 3 shows the computational costs of the networks
we utilized in experiments. StrongBaseline is a ResNet-
18 based binary neural network, and it has similar OPs
as Bi-RealNet-18 (Liu et al., 2018b) and Real-to-Binary
Network (Brais Martinez, 2020). ReActNet is a MobileNet-
based BNN, and it contains small overall OPs than other
binary networks.

4.3. Ablation Study

4.3.1. COMPARISON OF ADAM AND SGD UNDER
DIFFERENT LEARNING RATES

In Figure 8, we illustrate the Top-1 accuracy curves with dif-
ferent learning rates. To control variables, experiments are
done with one-step training strategy on the ImageNet dataset
with the StrongBaseline (Brais Martinez, 2020) structure. In
general, Adam can achieve higher accuracy across a variety
of learning rate values and is also more robust than SGD.
Besides, we observe that Adam enjoys small learning rates.
The reason is that Adam adopts the adaptive method to up-
date the gradients, which will amplify the actual learning
rate values during training, so it requires a smaller initial
learning rate to avoid update values being too large.

4.3.2. TWO-STEP TRAINING

To reassure the credibility of choosing the suggested two-
step training algorithm, we make a controlled comparison
between different training schemes. In Table 4, our sug-
gested order which first binarizes activations then weights
(BABW) obtained a 2.93% better accuracy over the reversed

BACKGROUND

Binary Neural Networks:
Weights and activations are binarized to –1 and +1.

Forward pass:

Backward pass:

Bare Demo of IEEEtran.cls
for IEEE Conferences

Michael Shell
School of Electrical and
Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332–0250

Email: http://www.michaelshell.org/contact.html

Homer Simpson
Twentieth Century Fox

Springfield, USA
Email: homer@thesimpsons.com

James Kirk
and Montgomery Scott

Starfleet Academy
San Francisco, California 96678–2391

Telephone: (800) 555–1212
Fax: (888) 555–1212

Abstract—The abstract goes here.

I. INTRODUCTION

This demo file is intended to serve as a “starter file” for
IEEE conference papers produced under LATEX using IEEE-
tran.cls version 1.8b and later. I wish you the best of success.

mds
August 26, 2015
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@Sign(ar)

@ar
⇡ @Clip(�1, ar, 1)

@ar
=

⇢
1 �1 < ar < 1
0 otherwise

,

(1)
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Fig. 2. The mechanism of xnor operation and bit-counting inside the 1-bit CNNs pre-
sented in [19].

while minimizing accuracy degradation. Successful attempts include DoReFa-
Net [33] and QNN [8], which explore neural networks trained with 1-bit weights
and 2-bit activations, and the accuracy drops by 6.1% and 4.9% respectively on
the ImageNet dataset compared to the real-valued AlexNet. Additionally, Bina-
ryNet [7] uses only 1-bit weights and 1-bit activations in a neural network and
achieves comparable accuracy as full-precision neural networks on the MNIST
and CIFAR-10 datasets. In XNOR-Net [19], Rastegari et al. further improve
BinaryNet by multiplying the absolute mean of the weight filter and activation
with the 1-bit weight and activation to improve the accuracy. ABC-Net [14]
proposes to enhance the accuracy by using more weight bases and activation
bases. The results of these studies are encouraging, but admittedly, due to the
loss of precision in weights and activations, the number of filters in the network
(thus the algorithm complexity) grows in order to maintain high accuracy, which
o↵sets the memory saving and speedup of binarizing the network.

In this study, we aim to design 1-bit CNNs aided with a real-valued shortcut
to compensate for the accuracy loss of binarization. Optimization strategies for
overcoming the gradient dismatch problem and discrete optimization di�culties
in 1-bit CNNs, along with a customized initialization method, are proposed to
fully explore the potential of 1-bit CNNs with its limited resolution.

3 Methodology

3.1 Standard 1-bit CNNs and Its Representational Capability

1-bit convolutional neural networks (CNNs) refer to the CNN models with bi-
nary weight parameters and binary activations in intermediate convolution lay-
ers. Specifically, the binary activation and weight are obtained through a sign
function,

ab = Sign(ar) =

⇢
�1 if ar < 0
+1 otherwise

, wb = Sign(wr) =

⇢
�1 if wr < 0
+1 otherwise

, (1)

where ar and wr indicate the real activation and the real weight, respectively.
ar exists in both training and inference process of the 1-bit CNN, due to the

CHALLENGES OF BNNS
BNNs have sharper local minima compared to the real-
valued networks

(a) real networks (b) binary networks 
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• Because BNNs restrict the weights and activations to 
discrete values (-1, +1), which naturally limits the 
representational capacity of the model and further 
result in disparate optimization landscapes.

• These properties differentiate BNNs from real-valued 
networks and impact the optimal optimizer and 
training strategy design.

• On the real-valued network, SGD achieves higher accuracy 
with better generalization ability in the final few iterations.

• While Adam outperforms SGD for BNNs. 

WHY ADAM IS BETTER FOR BNNS
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(a) SGD, first epoch (b) Adam, first epoch

(c) SGD, last epoch (d) Adam, last epoch

Figure 3. Activation distributions in binary ResNet-18 structure
from different optimizers on ImageNet. Dotted lines are the up (+1)
and low (-1) bounds. We plot the input activation to the first binary
convolution and we observe that both SGD and Adam optimized
BNNs experienced activation saturation. However, Adam can alle-
viate activation saturation during optimization compared to SGD,
as shown in the zoom-in views in (c) and (d). We further count the
number of activations that are over the bounds for SGD and Adam,
the percentages are 42.54% and 35.45% respectively after the first
epoch, 38.61% and 23.81% after the last epoch. The activation sat-
uration proportion from Adam optimization is significantly lower
than SGD. More details please refer to Section 3.2.1.

stored as latent weights to accumulate the small gradients.
Latent refers to that the weights are not used in the for-
ward pass computation. Instead, the sign of real-valued
latent weights multiplying the channel-wise absolute mean
( 1
n ||Wr||l1) is used for updating binary weights (Rastegari

et al., 2016).

In the backward pass, due to the non-differentiable charac-
teristic of the sign function, the derivative of clip(�1, ar, 1)
function is always adopted as the approximation to the
derivative of the sign function (Rastegari et al., 2016). It is
noteworthy that, because the sign is a function with bounded
range, the approximation to the derivative of the sign func-
tion will encounter a zero (or vanishing) gradient problem
when the activation exceeds the effective gradient range
([�1, 1]), which leads to the optimization difficulties that
will be discussed in Section 3.2.1.

3.2. Observations

3.2.1. ACTIVATION SATURATION ON GRADIENTS

Activation saturation is the phenomenon that the absolute
value of activations exceeds one and the corresponding gra-
dients are suppressed to be zero, according to the definition
of approximation to the derivative of the sign function (Ding
et al., 2019). From our observation, activation saturation
exists in every layer of a binary network and it will critically

affect the magnitude of gradients in different channels. In
Figure 3, we visualize the activation distributions of the
first binary convolution layer. We can observe that many
activations exceed the bounds of -1 and +1, making the gra-
dient passing those nodes become zero-valued. According
to the Chain Rule (Ambrosio & Dal Maso, 1990), the gra-
dients are extremely vulnerable to the activation saturation
in latter layers and thus will vibrate tempestuously in their
corresponding magnitudes.

3.2.2. FAIRNESS IN WEIGHT TRAINING

Unfair training is the phenomenon that the weights in some
channels are not optimized to learn meaningful represen-
tations. Given different batches of images, the activation
saturation usually occurs on different activation channels.
In these channels, the gradient will always stay small in
our observation, which causes unfair training. Note that the
weights refer to the real-valued latent weights in the binary
neural network. The magnitude of these real-valued weights
are regarded as ‘inertial’ (Helwegen et al., 2019), indicating
how likely the corresponding binary weights are going to
change their signs.

To measure the effect of unfair training, we calculate the
Channel-wise Absolute Mean (CAM) to capture the average
magnitude of real-valued weights within a kernel, which is
represented as red hyphens in Figure 4 and Figure 5. The
definition of CAM is as follows:

CAM =
1

Nin · k · k

NinX

c=1

kX

i=1

kX

j=1

|w{c,i,j}| (3)

where Nin is the number of input channels, w is the weights
in BNNs, c is the channel index, i, j are the element position
in c-channel, and k is the kernel size. We can see that when
using SGD, the CAM of latent weights in a binary network
are small in their values (Figure 4 (b)) compared with their
real-valued counterparts (Figure 4 (a)) and is also higher
in variance, which reflects the unbalanced weight training
inside the SGD optimized binary network.

To measure the uniformness of the trained latent real-valued
weight magnitude, we propose the Standard Deviation of
the Absolute Mean (SDAM) of the real-valued weight mag-
nitude on each output channel. The statistics of SDAM for
SGD and Adam are shown in Figure 4. It is evident that the
SDAM of Adam is lower than that of SGD, revealing higher
fairness and stability in the Adam training than SGD.

3.2.3. WHY IS ADAM BETTER THAN SGD?

For better illustration, we plot a two-dimensional loss sur-
face of a network with two nodes where each node contains
a sign function binarizing its input. As shown in Figure 6
(a), the sign functions result in a discretized loss landscape

• In the backward pass, the derivative of the sign function will 
encounter a zero (or vanishing) gradient problem when the 
activation exceeds the effective gradient range ([−1, 1]). 

Activation saturation result in gradient vanish.

• SGD update:
• Adam update:
• Adam naturally leverages the accumulation in the second 

momentum to amplify the learning rate regarding the gradients 
with small historical values. Thus, “dead” weights from 
saturation are easier to be re-activated by Adam than SGD.

(a) SGD (b) Adam
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Figure 6. The loss landscape visualization of a network constructed with the summation of two binary nodes. (a) the loss surface of the
binary network in the forward pass, binarization functions sign(x) discretized the landscape, (b) the loss surface for actual optimization
after using the derivative of clip(�1, x, 1) in approximating the derivative of sign(x), (c) the comparison between using SGD optimizer
and Adam optimizer in conquering the zero gradient local minima, (d) the top view of the actual optimization trajectory.

61.49% top-1 accuracy, comparing to 58.98% of SGD in
Figure 7 (b) with a consistent setting imposed on both ex-
periments in terms of hyper-parameters and network struc-
tures. Furthermore, we investigate the weight distribution
in Figure 7 of final models and obtain some interesting
discoveries. We find that the real-valued latent weights of
better-performing models usually emerge to three peaks,
one is around zero and the other two are beyond -1 and 1.
For those poorly optimized models with SGD, the distribu-
tions of real-valued weights only contain one peak center-
ing around zero. The physical significance of real-valued
weights indicates the degree of how easy or difficult the
corresponding binary weights can switch their signs (-1 or
+1) to the opposite direction. If the real-valued weights are
close to the central boundary (0), it will be simple for them
to fall or bias to -1 or +1 through a few steps of gradient
updating, making the whole network unstable. Thus, it is
not far-fetched that real-valued weights can be regarded as
the confidence of a binary value to be -1 or +1, as also being
mentioned in (Helwegen et al., 2019). From this perspective,
the weights learned by Adam are definitely more confident
than those learned by SGD, which consistently verifies the
conclusion that Adam is a better optimizer to use for binary
neural networks.

3.3. Metrics for Understanding BNN Optimization

Given the superiority of Adam over SGD, we take this find-
ing further and investigate the training strategy for BNNs.
Based on the intriguing fact that the BNN optimization re-
lies on real-value weights for gradient accumulation and
their signs for loss computation, BNN optimization is in-
tractable compared to real-valued networks. Thus for better
revealing the mechanism of the perplexing BNN training,
we propose two metrics to depict the training process and
further find that the weight decay added on the real-valued
latent weight plays a non-negligible role in controlling the
binary weights evolving.

3.3.1. WEIGHT DECAY IN BNN OPTIMIZATION

In a real-valued neural network, weight decay is usually
used to regularize the real-valued weights from growing too
large, which prevents over-fitting and helps to improve the
generalization ability (Krogh & Hertz, 1992).

However, for a binary neural network, the effect of weight
decay is less straightforward. As the absolute values of
weights in BNNs are restricted to -1 and +1, the weight
decay is no longer effective to prevent the binary weights
from being extremely large. Moreover, in a binary neural
network, the weight decay is applied to the real-valued la-
tent weights. Recall that in Section 3.2.4, the magnitude
of real-valued weights in BNNs can be viewed as the con-

fidence of corresponding binary weights to their current
values. Adding weight decay on these real-valued weights
is actually attempting to decay the confidence score.

From this perspective, the weight decay will lead to a
dilemma in binary network optimization between the stabil-
ity and the dependency of weight initialization. With high
weight decay, the magnitude of the latent weights is regular-
ized to be small, making the corresponding binary weights
“less confident” in their signs, and further prone to switch
their signs frequently, i.e., reducing the stability in optimiza-
tion. With smaller or even zero weight decay, the latent

weights tend to move towards -1 and +1, the corresponding
binary weights will be more stable to stay in the current
status. However, this is a trade-off since larger gradients
are required to promote the weights to switch their signs in
order to overcome the “dead” parameters issue. That is to
say, with small or zero weight decay, the performance of a
network will be influenced by initialization critically.

3.3.2. QUANTIFICATION METRICS

To quantify these two effects (network stability and initial-
ization dependency), we introduce two metrics: the flip-flop
(FF) ratio for measuring the optimization stability, and the

(a) (b)

EXPERIMENTS

• The magnitude of real-valued 
weights indicates how easy the 
corresponding binary weights 
can switch their signs (-1 or 
+1) to the opposite direction.

•

• Thus, real-valued weights can 
be regarded as the confidence 
of binary weights to be -1/ +1.

VISUALIZATION
Real-valued weight distribution

(a)SGD

(b)Adam

With the same architecture our 
training strategy bring 1.1%
improvement over ReActNet.

Dataset: ImageNet

Code is available ➞
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Figure 4: Under comparable model sizes, deeper and thinner models generally outperform their wider and shallower coun-
terparts across various tasks such as zero-shot common sense reasoning, question answering, and reading comprehension.

Table 1: Ablation study on input-output embedding sharing with a 30-layer model with 512 embedding dimension, on
zero-shot common-sense reasoning tasks. Increased depth (" depth) model has 32 layers.

Model # Params ARC-e ARC-c BoolQ PIQA SIQA HS OBQA WinoGrande Avg.
Without emb-share 135M 43.6 26.1 58.0 62.5 42.6 36.5 37.5 51.5 44.8
+ emb-share 119M 44.4 26.0 56.2 62.8 43.1 35.9 36.0 52.6 44.6
+ emb-share, " depth 125M 43.3 26.4 54.4 64.7 43.5 36.9 38.5 52.6 45.0

efficient and compact model architecture.

We experiment on a 30-layer 125M model. In Table 1, we
demonstrate that sharing the input and output embeddings
reduces the number of parameters by 16M, approximately
11.8% of total parameters with a 0.2 points drop in aver-
age accuracy. The marginal accuracy drop can be readily
restored by reallocating the saved parameters to add more
layers. Increasing the depth to 32 layers produces a 0.4
points accuracy gain while still maintaining 10M fewer pa-
rameters compared to the original 135M model. Similar
results are also observed in 350M models. These findings
further suggest that embedding sharing is a valuable tech-
nique for maximizing weight utilization and optimizing
model performance given limited model storage budget.

2.2.4. NUMBER OF HEADS AND KV HEADS

We now investigate the optimal head size for small trans-
former models. The trade-off between more semantics per
head dimension and more non-linear combinations of multi-
ple heads is a key consideration in choosing the head size. In
addition, most previous studies have typically used an identi-
cal number of key-value heads to query heads in sub-billion
parameter language models. Instead, we found that grouped
query attention, which is initially designed for reducing key-
value cache size in LLMs (Chowdhery et al., 2023; Ainslie
et al., 2023), that can also effectively reduce redundancy
in key-value heads in small LMs. Grouped query attention

(a) 125M (b) 350M

Figure 5: Ablation study on number of heads and kv-heads.
Here, ratio denotes the number of heads divided by number
of kv-heads. Averaged accuracy on zero-shot reasoning
tasks is reported.

can be viewed as another form of weight-sharing for weight
re-utilization, where the number of key-value heads is 1/n
that of query heads, and the kv head is repeated n times
in computing attention scores and output together with the
query. Here, n 2 Z+ denotes a positive integer that the
number of query heads are divisible by.

To establish a solid foundation for a state-of-the-art small
transformer model, we conducted experiments to determine
the desirable head size on 125M and 350M models. Results
in Figure 5 show that using 16 query heads produces the best
results. Additionally, reducing the number of kv-heads from
16 to 4 resulted in comparable accuracy for the 125M model
and only 0.2 points accuracy drop in the 350M model with
almost 10% model size reduction. These results serve as a

4

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

MobileLLM

(d) 350M model, TQA(c) 125M model, TQA

(e) 125M model, RACE (f) 350M model, RACE

(a) 125M model, Zero-shot reasoning (b) 350M model, Zero-shot reasoning

Figure 4: Under comparable model sizes, deeper and thinner models generally outperform their wider and shallower coun-
terparts across various tasks such as zero-shot common sense reasoning, question answering, and reading comprehension.

Table 1: Ablation study on input-output embedding sharing with a 30-layer model with 512 embedding dimension, on
zero-shot common-sense reasoning tasks. Increased depth (" depth) model has 32 layers.

Model # Params ARC-e ARC-c BoolQ PIQA SIQA HS OBQA WinoGrande Avg.
Without emb-share 135M 43.6 26.1 58.0 62.5 42.6 36.5 37.5 51.5 44.8
+ emb-share 119M 44.4 26.0 56.2 62.8 43.1 35.9 36.0 52.6 44.6
+ emb-share, " depth 125M 43.3 26.4 54.4 64.7 43.5 36.9 38.5 52.6 45.0

efficient and compact model architecture.
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reduces the number of parameters by 16M, approximately
11.8% of total parameters with a 0.2 points drop in aver-
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points accuracy gain while still maintaining 10M fewer pa-
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results are also observed in 350M models. These findings
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nique for maximizing weight utilization and optimizing
model performance given limited model storage budget.

2.2.4. NUMBER OF HEADS AND KV HEADS

We now investigate the optimal head size for small trans-
former models. The trade-off between more semantics per
head dimension and more non-linear combinations of multi-
ple heads is a key consideration in choosing the head size. In
addition, most previous studies have typically used an identi-
cal number of key-value heads to query heads in sub-billion
parameter language models. Instead, we found that grouped
query attention, which is initially designed for reducing key-
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et al., 2023), that can also effectively reduce redundancy
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re-utilization, where the number of key-value heads is 1/n
that of query heads, and the kv head is repeated n times
in computing attention scores and output together with the
query. Here, n 2 Z+ denotes a positive integer that the
number of query heads are divisible by.

To establish a solid foundation for a state-of-the-art small
transformer model, we conducted experiments to determine
the desirable head size on 125M and 350M models. Results
in Figure 5 show that using 16 query heads produces the best
results. Additionally, reducing the number of kv-heads from
16 to 4 resulted in comparable accuracy for the 125M model
and only 0.2 points accuracy drop in the 350M model with
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4

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

MobileLLM

Table 2: Ablation study of layer-sharing strategy on zero-shot common sense reasoning tasks.

Model Sharing method ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.

125M
baseline 41.6 25.7 61.1 62.4 43.1 34.4 36.9 51.6 44.6
Immediate block-wise share 43.9 27.9 61.5 64.3 41.5 35.5 35.1 50.2 45.0
Repeat-all-over share 43.6 27.1 60.7 63.4 42.6 35.5 36.9 51.7 45.2
Reverse share 43.8 26.0 58.9 62.9 42.2 35.2 36.8 52.2 44.8

350M
baseline 50.8 30.6 62.3 68.6 43.5 45.1 43.8 52.4 49.6
Immediate block-wise share 51.5 30.8 59.6 68.2 43.9 47.7 44.7 55.0 50.2
Repeat-all-over share 53.5 33.0 61.2 69.4 43.2 48.3 42.2 54.6 50.7
Reverse share 50.7 32.2 61.0 68.8 43.8 47.4 43.1 53.8 50.1

Table 3: Zero-shot performance on Common Sense Reasoning tasks. MobileLLM denotes the proposed baseline model
and MobileLLM-LS is integrated with layer sharing with the #layer counting layers with distinct weights.

Model #Layers #Params ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.
Cerebras-GPT-111M 10 111M 35.8 20.2 62.0 58.0 39.8 26.7 29.0 48.8 40.0
LaMini-GPT-124M 12 124M 43.6 26.0 51.8 62.7 42.1 30.2 29.6 49.2 41.9
Galactica-125M 12 125M 44.0 26.2 54.9 55.4 38.9 29.6 28.2 49.6 40.9
OPT-125M 12 125M 41.3 25.2 57.5 62.0 41.9 31.1 31.2 50.8 42.6
GPT-neo-125M 12 125M 40.7 24.8 61.3 62.5 41.9 29.7 31.6 50.7 42.9
Pythia-160M 12 162M 40.0 25.3 59.5 62.0 41.5 29.9 31.2 50.9 42.5
RWKV-169M 12 169M 42.5 25.3 59.1 63.9 40.7 31.9 33.8 51.5 43.6
MobileLLM-125M 30 125M 43.9 27.1 60.2 65.3 42.4 38.9 39.5 53.1 46.3
MobileLLM-LS-125M 30 125M 45.8 28.7 60.4 65.7 42.9 39.5 41.1 52.1 47.0
Cerebras-GPT-256M 14 256M 37.9 23.2 60.3 61.4 40.6 28.3 31.8 50.5 41.8
OPT-350M 24 331M 41.9 25.7 54.0 64.8 42.6 36.2 33.3 52.4 43.9
RWKV-430M 24 430M 48.9 32.0 53.4 68.1 43.6 40.6 37.8 51.6 47.0
Pythia-410M 24 405M 47.1 30.3 55.3 67.2 43.1 40.1 36.2 53.4 46.6
BLOOM-560M 24 559M 43.7 27.5 53.7 65.1 42.5 36.5 32.6 52.2 44.2
Cerebras-GPT-590M 18 590M 42.6 24.9 57.7 62.8 40.9 32.0 33.2 49.7 43.0
MobileLLM-350M 32 345M 53.8 33.5 62.4 68.6 44.7 49.6 40.0 57.6 51.3
MobileLLM-LS-350M 32 345M 54.4 32.5 62.8 69.8 44.1 50.6 45.8 57.2 52.1

Table 4: Performance on Trivia QA and RACE datasets for
question answering and reading comprehension tasks.

TQA (F1 score) RACE (Acc)
Model 1-shot 5-shot 64-shot middle high
Cerebras-GPT-111M 1.9 3.8 4.4 29.2 24.3
OPT-125M 8.7 9.6 8.2 34.7 27.5
GPT-Neo-125M 8.0 7.9 5.0 34.7 27.0
Pythia-160M 2.1 1.4 2.1 30.2 25.1
MobileLLM-125M 13.9 14.3 12.5 39.7 28.9
MobileLLM-LS-125M 14.2 14.8 14.6 40.7 29.6
Cerebras-GPT-256M 5.2 6.8 3.3 31.7 26.2
OPT-350M 11.0 12.3 10.4 37.1 28.0
Pythia-410M 12.4 13.8 12.8 39.1 29.7
BLOOM-560M 8.8 8.9 5.3 37.6 28.2
Cerebras-GPT-590M 6.4 9.1 4.9 34.6 27.4
MobileLLM-350M 22.0 23.9 24.2 45.6 33.8
MobileLLM-LS-350M 21.4 22.5 22.6 47.3 33.7

benchmark (Joshi et al., 2017) and RACE reading com-
prehension benchmark (Lai et al., 2017). We follow the
evalutation setup from (Touvron et al., 2023a) and report
the results in Table 4. Comparing models of 125M size,
MobileLLM-125M demonstrates a noteworthy improve-
ment of over 4.3 points on the TQA benchmark contrast to
its predecessor. Moreover, the MobileLLM-350M model
exhibits a substantial performance increase of approximately
10 points compared to other 350M-sized models. For the
reading comprehension tasks, MobileLLM model family
also significant higher scores than preceding sub-billion
parameter models.

3.3. Downstream Tasks

To validate the effectiveness of sub-billion scale models for
on-device applications, we assess their performance in two
crucial on-device tasks: Chat and API calling.

3.3.1. CHAT

We fine-tune MobileLLMmodels, as well as previous state-
of-the-art (SoTA) models sourced from HuggingFace check-
points, on the UltraChat dataset (Ding et al., 2023) for one
epoch. We employ the Adam optimizer with a batch size of
4, an initial learning rate of 2e-5, and a cosine learning rate
decay scheduler.

We evaluate on two benchmarks: AlpacaEval (Li et al.,
2023), a single-run chat benchmark, and MT-Bench (Zheng
et al., 2023), a multi-run chat benchmark. The results pre-
sented in Table 5 showcases that MobileLLM models sig-
nificantly outperforms previous state-of-the-art sub-billion
scale models, surpassing even models with 1 billion pa-
rameters. Notably, MobileLLM-LS-350M achieves a re-
markable win rate of 48.2% when compared to the baseline
GPT-3 model (text-davinci-001). Considering the self-win
rate of GPT-3 is 50%, is noteworthy that MobileLLM-LS-
350M obtains comparable chat performance as this baseline
model. Visualizations of chat examples in the appendix also
underscore the impressive quality of responses generated by
MobileLLM models.
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Table 7: Latency analysis of MobileLLM-125M (30
layers), MobileLLM-LS-125M (2⇥30 layers, adjacent
blocks sharing weights), and a 60-layer non-shared weight
model, with consistent configurations in all other aspects.

Load Init Execute
MobileLLM 39.2 ms 1361.7 ms 15.6 ms
MobileLLM-LS 43.6 ms 1388.2 ms 16.0 ms
60-layer non-shared 68.6 ms 3347.7 ms 29.0 ms

doubling the number of layers, MobileLLM-LS incurs
only a 2.2% increase in loading and initialization time com-
pared to MobileLLM, attributable to their similar model
sizes. Execution time also experiences a mere 2.6% over-
head, benefitting from data locality. In contrast, a model
with doubled number of layers without weight sharing ex-
hibits a substantial 143% rise in loading and initialization
time and an 86% increase in execution time.

4. Related Work
The excellent performance of LLMs has fostered its wide
applications. Considering computational cost and energy
consumption of LLMs, an new stream of research direc-
tion have emerged to downsize LLMs to enable on-device
inference. These methods include:

Model Compression. Numerous model compression meth-
ods are developed for LLMs, including pruning(Xia et al.,
2023b), sparsity (Sun et al., 2023; Xia et al., 2023a; Fran-
tar & Alistarh, 2023), and quantization (Liu et al., 2023a;
Dettmers et al., 2022; Kim et al., 2023; Frantar et al., 2022;
Xiao et al., 2023; Yao et al., 2022; Liu et al., 2023c;b; Fran-
tar et al., 2022). Our research is complementary to these
techniques. As also substantiated in Section 3.4, our method-
ology is compatible with quantization.

Small Model Design. A limited number of studies have
explored compact model architectures, such as TinyLLaMA
(Timiryasov & Tastet, 2023). However, even the smallest
TinyLLaMA exceeds 1 billion parameters, making them
still prohibitive for many on-device applications. Some
research proposes large model architectures alongside their
smaller LLM variants in a model family (Zhang et al., 2022;
Scao et al., 2022; Black et al., 2022; Dey et al., 2023) or a
analytical suite containing small LLM variants (Biderman
et al., 2023). However, these models are not optimized
under the constraint of sub-billion parameters and therefore
may not be optimal.

Neural Architecture Search. NAS has garnered substan-
tial attention in the realm of convolutional neural networks,
particularly in the context of vision tasks (Tan & Le, 2019;
Zoph & Le, 2016; Wu et al., 2019; Guo et al., 2020). In
contrast, within the transformer domain, the prevailing con-

sensus posits that the model architecture exerts minimal
influence on accuracy, provided the total number of pa-
rameters remains consistent (Kaplan et al., 2020). Only a
limited number of studies have developed NAS algorithm
for language transformer, targeting at BERT models (Xu
et al., 2021; Jawahar et al., 2023; Ganesan et al., 2021).
Our current investigation, focusing on the interplay between
depth and width, can be conceptualized as a meticulous
grid search within the depth space. The outcomes of that
study challenge the prevalent orthodoxy surrounding scaling
laws, proposing that deep and thin architectures demonstrate
higher performance for compact LLMs.

Weight Sharing. Weight sharing is an intuitive strategy for
optimizing model weight utilization within fixed parame-
ter constraints. While the OPT family (Zhang et al., 2022)
and subsequent works (Black et al., 2022) leverage weight
sharing between input and output embeddings, limited re-
search has explored weight sharing for intermediate layers
in transformers (Shen et al., 2022; Reid et al., 2021). Prior
efforts often entail specialized designs for shared layers. In
contrast, our contribution highlights a more straightforward
yet effective way of simply repeating transformer blocks,
yielding improved accuracy with a fixed model size and
minimal latency increase.

Efficient Attention and Implementation. In the realm of
efficient transformer design, much research has focused on
optimizing attention computation through methods like low-
rank approximation (Wang et al., 2020; Katharopoulos et al.,
2020; Xiong et al., 2021) and sparse attention (Kitaev et al.,
2020; Roy et al., 2021). Another line of work explores
hardware scheduling and weight movement, exemplified
by works such as FlashAttention (Dao et al., 2022) and
FlexGen (Sheng et al., 2023). In contrast, our primary goal
is to optimize model size without introducing new attention
computation or efficient hardware implementation methods.

5. Conclusion
This study focuses on optimizing sub-billion scale mod-
els for on-device applications. Our findings indicate that,
for smaller models, prioritizing depth over width enhances
model performance. Furthermore, by leveraging advanced
weight-sharing techniques, including embedding sharing,
grouped query attention, and block-wise weight sharing,
we achieve significant enhancements in weight utilization
within storage-constrained scenarios. The resulting models
denoted as MobileLLM exhibit substantial advancements
in zero-shot commonsense reasoning, question answering,
and reading comprehension tasks compared to previous
SoTA methods. Last but not least, we demonstrate the ef-
fectiveness of the fine-tuned MobileLLM models in two
prevalent on-device use cases: chat and API calling, under-
scoring their adeptness in handling such tasks.
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MobileLLM:

SoC last level
Hardware Device memory size DRAM size
Apple A16 iPhone 15 24 MB 6 GB
Apple A15 iPhone 14 32 MB 6 GB

Google Pixel 8 8 MB 8 GB / 12 GB (pro)
QCOM Snapdragon 8 10 MB 8-12 GB

Table 9: Your caption

Table 10: Ablation: depth and layer sharing.

Model #Layer #Heads Dim #Params(M) ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.

130M

4 20 1280 163.2 42.3 26.3 61.1 62.1 41.6 32.9 33.0 51.7 43.9
6 16 1024 138.1 41.0 26.5 61.8 61.7 41.4 32.0 33.5 51.2 43.6
8 14 896 142.6 40.2 26.8 53.7 62.7 41.7 32.9 35.5 51.7 43.2

12 12 768 134.1 42.0 26.6 59.8 63.6 41.8 34.9 37.9 51.0 44.7
18 10 640 132.4 41.0 25.5 59.3 62.6 41.6 34.2 36.7 50.1 43.9
24 9 576 132.4 42.1 25.2 61.9 62.9 42.0 35.4 38.6 52.0 45.0
30 8 512 135.0 43.2 27.7 57.5 63.7 42.4 36.4 38.1 52.9 45.2
42 7 448 134.6 43.3 26.1 57.8 63.3 41.7 36.3 35.9 52.0 44.5
62 6 384 134.3 44.1 26.7 59.0 64.7 42.4 36.2 33.1 53.8 45.0

380M

5 32 2048 388.0 47.9 28.8 62.2 65.2 42.8 38.1 39.0 52.6 47.1
10 24 1536 381.4 49.1 29.6 60.6 67.1 44.0 42.7 41.2 54.4 48.6
12 22 1408 379.9 49.9 31.6 59.1 68.2 42.6 44.0 43.7 53.8 49.1
15 20 1280 386.7 49.2 30.6 59.1 67.7 44.3 43.2 41.0 54.2 48.7
19 18 1152 376.3 50.8 30.9 56.3 69.1 43.8 45.2 39.6 54.5 48.8
24 16 1024 373.8 50.7 33.8 58.8 68.6 43.5 45.0 40.0 54.9 49.4
28 15 960 371.1 49.7 30.5 59.5 68.1 45.1 44.9 43.4 55.5 49.6
32 14 896 380.3 51.7 33.2 57.6 67.9 42.9 46.0 37.7 53.9 48.9
46 12 768 374.7 50.7 31.4 59.4 67.8 43.3 46.2 43.8 56.2 49.8
66 10 640 376.2 50.5 31.8 61.0 67.4 43.8 46.0 40.1 55.6 49.5

130M

4 20 1280 155.6 42.1 26.9 61.4 62.2 41.3 34.3 35.1 51.5 44.3
6 16 1024 131.7 42.3 26.5 58.0 61.3 42.8 33.3 34.8 52.3 43.9
8 14 896 136.0 43.0 24.7 59.3 62.4 42.0 34.6 39.3 50.8 44.5

12 12 768 127.9 43.3 26.6 58.7 63.3 41.6 36.0 37.8 52.1 44.9
18 10 640 126.3 43.3 27.5 60.4 64.6 42.7 35.9 37.6 53.4 45.7
24 9 576 126.3 44.4 27.7 57.5 64.0 42.4 37.1 35.1 53.9 45.2
30 8 512 128.8 44.8 27.4 59.2 64.5 43.5 37.0 38.0 52.5 45.8
42 7 448 128.4 43.9 27.9 62.3 63.6 42.9 37.1 36.3 52.8 45.8
62 6 384 128.1 43.2 26.4 59.7 63.7 42.5 37.1 37.7 51.8 45.3

380M

5 32 2048 370.0 50.6 31.2 58.6 67.1 43.7 43.2 41.5 55.4 48.9
10 24 1536 363.8 50.5 32.0 60.0 68.3 42.7 45.9 40.3 56.9 49.6
12 22 1408 362.3 50.3 31.9 57.8 67.4 43.7 45.4 42.5 55.0 49.2
15 20 1280 368.8 53.4 32.1 61.9 68.0 43.5 46.6 41.5 54.9 50.2
19 18 1152 358.9 52.5 32.7 60.0 68.7 43.8 46.8 42.9 57.6 50.6
24 16 1024 356.5 50.7 31.1 59.2 69.1 42.7 46.4 40.9 53.7 49.2
28 15 960 353.9 49.1 30.9 58.7 68.2 44.3 46.0 40.5 54.9 49.1
32 14 896 362.7 51.5 32.0 60.9 68.7 43.6 46.7 42.1 55.3 50.1
46 12 768 357.4 51.9 31.6 60.4 69.2 43.7 47.2 43.8 54.0 50.2
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Figure 4: Under comparable model sizes, deeper and thinner models generally outperform their wider and shallower coun-
terparts across various tasks such as zero-shot common sense reasoning, question answering, and reading comprehension.

Table 1: Ablation study on input-output embedding sharing with a 30-layer model with 512 embedding dimension, on
zero-shot common-sense reasoning tasks. Increased depth (" depth) model has 32 layers.

Model # Params ARC-e ARC-c BoolQ PIQA SIQA HS OBQA WinoGrande Avg.
Without emb-share 135M 43.6 26.1 58.0 62.5 42.6 36.5 37.5 51.5 44.8
+ emb-share 119M 44.4 26.0 56.2 62.8 43.1 35.9 36.0 52.6 44.6
+ emb-share, " depth 125M 43.3 26.4 54.4 64.7 43.5 36.9 38.5 52.6 45.0

efficient and compact model architecture.

We experiment on a 30-layer 125M model. In Table 1, we
demonstrate that sharing the input and output embeddings
reduces the number of parameters by 16M, approximately
11.8% of total parameters with a 0.2 points drop in aver-
age accuracy. The marginal accuracy drop can be readily
restored by reallocating the saved parameters to add more
layers. Increasing the depth to 32 layers produces a 0.4
points accuracy gain while still maintaining 10M fewer pa-
rameters compared to the original 135M model. Similar
results are also observed in 350M models. These findings
further suggest that embedding sharing is a valuable tech-
nique for maximizing weight utilization and optimizing
model performance given limited model storage budget.

2.2.4. NUMBER OF HEADS AND KV HEADS

We now investigate the optimal head size for small trans-
former models. The trade-off between more semantics per
head dimension and more non-linear combinations of multi-
ple heads is a key consideration in choosing the head size. In
addition, most previous studies have typically used an identi-
cal number of key-value heads to query heads in sub-billion
parameter language models. Instead, we found that grouped
query attention, which is initially designed for reducing key-
value cache size in LLMs (Chowdhery et al., 2023; Ainslie
et al., 2023), that can also effectively reduce redundancy
in key-value heads in small LMs. Grouped query attention

(a) 125M (b) 350M

Figure 5: Ablation study on number of heads and kv-heads.
Here, ratio denotes the number of heads divided by number
of kv-heads. Averaged accuracy on zero-shot reasoning
tasks is reported.

can be viewed as another form of weight-sharing for weight
re-utilization, where the number of key-value heads is 1/n
that of query heads, and the kv head is repeated n times
in computing attention scores and output together with the
query. Here, n 2 Z+ denotes a positive integer that the
number of query heads are divisible by.

To establish a solid foundation for a state-of-the-art small
transformer model, we conducted experiments to determine
the desirable head size on 125M and 350M models. Results
in Figure 5 show that using 16 query heads produces the best
results. Additionally, reducing the number of kv-heads from
16 to 4 resulted in comparable accuracy for the 125M model
and only 0.2 points accuracy drop in the 350M model with
almost 10% model size reduction. These results serve as a
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Figure 4: Under comparable model sizes, deeper and thinner models generally outperform their wider and shallower coun-
terparts across various tasks such as zero-shot common sense reasoning, question answering, and reading comprehension.

Table 1: Ablation study on input-output embedding sharing with a 30-layer model with 512 embedding dimension, on
zero-shot common-sense reasoning tasks. Increased depth (" depth) model has 32 layers.

Model # Params ARC-e ARC-c BoolQ PIQA SIQA HS OBQA WinoGrande Avg.
Without emb-share 135M 43.6 26.1 58.0 62.5 42.6 36.5 37.5 51.5 44.8
+ emb-share 119M 44.4 26.0 56.2 62.8 43.1 35.9 36.0 52.6 44.6
+ emb-share, " depth 125M 43.3 26.4 54.4 64.7 43.5 36.9 38.5 52.6 45.0

efficient and compact model architecture.

We experiment on a 30-layer 125M model. In Table 1, we
demonstrate that sharing the input and output embeddings
reduces the number of parameters by 16M, approximately
11.8% of total parameters with a 0.2 points drop in aver-
age accuracy. The marginal accuracy drop can be readily
restored by reallocating the saved parameters to add more
layers. Increasing the depth to 32 layers produces a 0.4
points accuracy gain while still maintaining 10M fewer pa-
rameters compared to the original 135M model. Similar
results are also observed in 350M models. These findings
further suggest that embedding sharing is a valuable tech-
nique for maximizing weight utilization and optimizing
model performance given limited model storage budget.

2.2.4. NUMBER OF HEADS AND KV HEADS

We now investigate the optimal head size for small trans-
former models. The trade-off between more semantics per
head dimension and more non-linear combinations of multi-
ple heads is a key consideration in choosing the head size. In
addition, most previous studies have typically used an identi-
cal number of key-value heads to query heads in sub-billion
parameter language models. Instead, we found that grouped
query attention, which is initially designed for reducing key-
value cache size in LLMs (Chowdhery et al., 2023; Ainslie
et al., 2023), that can also effectively reduce redundancy
in key-value heads in small LMs. Grouped query attention
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of kv-heads. Averaged accuracy on zero-shot reasoning
tasks is reported.

can be viewed as another form of weight-sharing for weight
re-utilization, where the number of key-value heads is 1/n
that of query heads, and the kv head is repeated n times
in computing attention scores and output together with the
query. Here, n 2 Z+ denotes a positive integer that the
number of query heads are divisible by.

To establish a solid foundation for a state-of-the-art small
transformer model, we conducted experiments to determine
the desirable head size on 125M and 350M models. Results
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Table 2: Ablation study of layer-sharing strategy on zero-shot common sense reasoning tasks.

Model Sharing method ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.

125M
baseline 41.6 25.7 61.1 62.4 43.1 34.4 36.9 51.6 44.6
Immediate block-wise share 43.9 27.9 61.5 64.3 41.5 35.5 35.1 50.2 45.0
Repeat-all-over share 43.6 27.1 60.7 63.4 42.6 35.5 36.9 51.7 45.2
Reverse share 43.8 26.0 58.9 62.9 42.2 35.2 36.8 52.2 44.8

350M
baseline 50.8 30.6 62.3 68.6 43.5 45.1 43.8 52.4 49.6
Immediate block-wise share 51.5 30.8 59.6 68.2 43.9 47.7 44.7 55.0 50.2
Repeat-all-over share 53.5 33.0 61.2 69.4 43.2 48.3 42.2 54.6 50.7
Reverse share 50.7 32.2 61.0 68.8 43.8 47.4 43.1 53.8 50.1

Table 3: Zero-shot performance on Common Sense Reasoning tasks. MobileLLM denotes the proposed baseline model
and MobileLLM-LS is integrated with layer sharing with the #layer counting layers with distinct weights.

Model #Layers #Params ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.
Cerebras-GPT-111M 10 111M 35.8 20.2 62.0 58.0 39.8 26.7 29.0 48.8 40.0
LaMini-GPT-124M 12 124M 43.6 26.0 51.8 62.7 42.1 30.2 29.6 49.2 41.9
Galactica-125M 12 125M 44.0 26.2 54.9 55.4 38.9 29.6 28.2 49.6 40.9
OPT-125M 12 125M 41.3 25.2 57.5 62.0 41.9 31.1 31.2 50.8 42.6
GPT-neo-125M 12 125M 40.7 24.8 61.3 62.5 41.9 29.7 31.6 50.7 42.9
Pythia-160M 12 162M 40.0 25.3 59.5 62.0 41.5 29.9 31.2 50.9 42.5
RWKV-169M 12 169M 42.5 25.3 59.1 63.9 40.7 31.9 33.8 51.5 43.6
MobileLLM-125M 30 125M 43.9 27.1 60.2 65.3 42.4 38.9 39.5 53.1 46.3
MobileLLM-LS-125M 30 125M 45.8 28.7 60.4 65.7 42.9 39.5 41.1 52.1 47.0
Cerebras-GPT-256M 14 256M 37.9 23.2 60.3 61.4 40.6 28.3 31.8 50.5 41.8
OPT-350M 24 331M 41.9 25.7 54.0 64.8 42.6 36.2 33.3 52.4 43.9
RWKV-430M 24 430M 48.9 32.0 53.4 68.1 43.6 40.6 37.8 51.6 47.0
Pythia-410M 24 405M 47.1 30.3 55.3 67.2 43.1 40.1 36.2 53.4 46.6
BLOOM-560M 24 559M 43.7 27.5 53.7 65.1 42.5 36.5 32.6 52.2 44.2
Cerebras-GPT-590M 18 590M 42.6 24.9 57.7 62.8 40.9 32.0 33.2 49.7 43.0
MobileLLM-350M 32 345M 53.8 33.5 62.4 68.6 44.7 49.6 40.0 57.6 51.3
MobileLLM-LS-350M 32 345M 54.4 32.5 62.8 69.8 44.1 50.6 45.8 57.2 52.1

Table 4: Performance on Trivia QA and RACE datasets for
question answering and reading comprehension tasks.

TQA (F1 score) RACE (Acc)
Model 1-shot 5-shot 64-shot middle high
Cerebras-GPT-111M 1.9 3.8 4.4 29.2 24.3
OPT-125M 8.7 9.6 8.2 34.7 27.5
GPT-Neo-125M 8.0 7.9 5.0 34.7 27.0
Pythia-160M 2.1 1.4 2.1 30.2 25.1
MobileLLM-125M 13.9 14.3 12.5 39.7 28.9
MobileLLM-LS-125M 14.2 14.8 14.6 40.7 29.6
Cerebras-GPT-256M 5.2 6.8 3.3 31.7 26.2
OPT-350M 11.0 12.3 10.4 37.1 28.0
Pythia-410M 12.4 13.8 12.8 39.1 29.7
BLOOM-560M 8.8 8.9 5.3 37.6 28.2
Cerebras-GPT-590M 6.4 9.1 4.9 34.6 27.4
MobileLLM-350M 22.0 23.9 24.2 45.6 33.8
MobileLLM-LS-350M 21.4 22.5 22.6 47.3 33.7

benchmark (Joshi et al., 2017) and RACE reading com-
prehension benchmark (Lai et al., 2017). We follow the
evalutation setup from (Touvron et al., 2023a) and report
the results in Table 4. Comparing models of 125M size,
MobileLLM-125M demonstrates a noteworthy improve-
ment of over 4.3 points on the TQA benchmark contrast to
its predecessor. Moreover, the MobileLLM-350M model
exhibits a substantial performance increase of approximately
10 points compared to other 350M-sized models. For the
reading comprehension tasks, MobileLLM model family
also significant higher scores than preceding sub-billion
parameter models.

3.3. Downstream Tasks

To validate the effectiveness of sub-billion scale models for
on-device applications, we assess their performance in two
crucial on-device tasks: Chat and API calling.

3.3.1. CHAT

We fine-tune MobileLLMmodels, as well as previous state-
of-the-art (SoTA) models sourced from HuggingFace check-
points, on the UltraChat dataset (Ding et al., 2023) for one
epoch. We employ the Adam optimizer with a batch size of
4, an initial learning rate of 2e-5, and a cosine learning rate
decay scheduler.

We evaluate on two benchmarks: AlpacaEval (Li et al.,
2023), a single-run chat benchmark, and MT-Bench (Zheng
et al., 2023), a multi-run chat benchmark. The results pre-
sented in Table 5 showcases that MobileLLM models sig-
nificantly outperforms previous state-of-the-art sub-billion
scale models, surpassing even models with 1 billion pa-
rameters. Notably, MobileLLM-LS-350M achieves a re-
markable win rate of 48.2% when compared to the baseline
GPT-3 model (text-davinci-001). Considering the self-win
rate of GPT-3 is 50%, is noteworthy that MobileLLM-LS-
350M obtains comparable chat performance as this baseline
model. Visualizations of chat examples in the appendix also
underscore the impressive quality of responses generated by
MobileLLM models.
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Table 7: Latency analysis of MobileLLM-125M (30
layers), MobileLLM-LS-125M (2⇥30 layers, adjacent
blocks sharing weights), and a 60-layer non-shared weight
model, with consistent configurations in all other aspects.

Load Init Execute
MobileLLM 39.2 ms 1361.7 ms 15.6 ms
MobileLLM-LS 43.6 ms 1388.2 ms 16.0 ms
60-layer non-shared 68.6 ms 3347.7 ms 29.0 ms

doubling the number of layers, MobileLLM-LS incurs
only a 2.2% increase in loading and initialization time com-
pared to MobileLLM, attributable to their similar model
sizes. Execution time also experiences a mere 2.6% over-
head, benefitting from data locality. In contrast, a model
with doubled number of layers without weight sharing ex-
hibits a substantial 143% rise in loading and initialization
time and an 86% increase in execution time.

4. Related Work
The excellent performance of LLMs has fostered its wide
applications. Considering computational cost and energy
consumption of LLMs, an new stream of research direc-
tion have emerged to downsize LLMs to enable on-device
inference. These methods include:

Model Compression. Numerous model compression meth-
ods are developed for LLMs, including pruning(Xia et al.,
2023b), sparsity (Sun et al., 2023; Xia et al., 2023a; Fran-
tar & Alistarh, 2023), and quantization (Liu et al., 2023a;
Dettmers et al., 2022; Kim et al., 2023; Frantar et al., 2022;
Xiao et al., 2023; Yao et al., 2022; Liu et al., 2023c;b; Fran-
tar et al., 2022). Our research is complementary to these
techniques. As also substantiated in Section 3.4, our method-
ology is compatible with quantization.

Small Model Design. A limited number of studies have
explored compact model architectures, such as TinyLLaMA
(Timiryasov & Tastet, 2023). However, even the smallest
TinyLLaMA exceeds 1 billion parameters, making them
still prohibitive for many on-device applications. Some
research proposes large model architectures alongside their
smaller LLM variants in a model family (Zhang et al., 2022;
Scao et al., 2022; Black et al., 2022; Dey et al., 2023) or a
analytical suite containing small LLM variants (Biderman
et al., 2023). However, these models are not optimized
under the constraint of sub-billion parameters and therefore
may not be optimal.

Neural Architecture Search. NAS has garnered substan-
tial attention in the realm of convolutional neural networks,
particularly in the context of vision tasks (Tan & Le, 2019;
Zoph & Le, 2016; Wu et al., 2019; Guo et al., 2020). In
contrast, within the transformer domain, the prevailing con-

sensus posits that the model architecture exerts minimal
influence on accuracy, provided the total number of pa-
rameters remains consistent (Kaplan et al., 2020). Only a
limited number of studies have developed NAS algorithm
for language transformer, targeting at BERT models (Xu
et al., 2021; Jawahar et al., 2023; Ganesan et al., 2021).
Our current investigation, focusing on the interplay between
depth and width, can be conceptualized as a meticulous
grid search within the depth space. The outcomes of that
study challenge the prevalent orthodoxy surrounding scaling
laws, proposing that deep and thin architectures demonstrate
higher performance for compact LLMs.

Weight Sharing. Weight sharing is an intuitive strategy for
optimizing model weight utilization within fixed parame-
ter constraints. While the OPT family (Zhang et al., 2022)
and subsequent works (Black et al., 2022) leverage weight
sharing between input and output embeddings, limited re-
search has explored weight sharing for intermediate layers
in transformers (Shen et al., 2022; Reid et al., 2021). Prior
efforts often entail specialized designs for shared layers. In
contrast, our contribution highlights a more straightforward
yet effective way of simply repeating transformer blocks,
yielding improved accuracy with a fixed model size and
minimal latency increase.

Efficient Attention and Implementation. In the realm of
efficient transformer design, much research has focused on
optimizing attention computation through methods like low-
rank approximation (Wang et al., 2020; Katharopoulos et al.,
2020; Xiong et al., 2021) and sparse attention (Kitaev et al.,
2020; Roy et al., 2021). Another line of work explores
hardware scheduling and weight movement, exemplified
by works such as FlashAttention (Dao et al., 2022) and
FlexGen (Sheng et al., 2023). In contrast, our primary goal
is to optimize model size without introducing new attention
computation or efficient hardware implementation methods.

5. Conclusion
This study focuses on optimizing sub-billion scale mod-
els for on-device applications. Our findings indicate that,
for smaller models, prioritizing depth over width enhances
model performance. Furthermore, by leveraging advanced
weight-sharing techniques, including embedding sharing,
grouped query attention, and block-wise weight sharing,
we achieve significant enhancements in weight utilization
within storage-constrained scenarios. The resulting models
denoted as MobileLLM exhibit substantial advancements
in zero-shot commonsense reasoning, question answering,
and reading comprehension tasks compared to previous
SoTA methods. Last but not least, we demonstrate the ef-
fectiveness of the fine-tuned MobileLLM models in two
prevalent on-device use cases: chat and API calling, under-
scoring their adeptness in handling such tasks.
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Table 5: Benchmark results on AlpacaEval (Evaluator: GPT-
4; Reference model: text-davinci-001) and MT-Bench.

Model MT-Bench(score) Alpaca Eval(win %)

number of parameters < 200M

OPT-125M 1.21 3.91
GPT-Neo-125M 1.06 1.01
Pythia-160M 1.01 0.63
MobileLLM-125M 2.33 24.07
MobileLLM-LS-125M 2.52 23.79

200M < number of parameters < 1B

OPT-350M 1.37 6.80
Pythia-410M 1.62 13.87
BLOOM-560M 1.73 10.29
MobileLLM-350M 3.28 47.08
MobileLLM-LS-350M 3.16 48.20

number of parameters > 1B

Pythia-1B 1.70 16.62
BLOOM-1.1B 2.37 19.90
Falcon-1.3B 2.54 30.38
OPT-1.3B 2.24 38.84

3.3.2. API CALLING

API calling is a common on-device application, particularly
in collaboration with audio-to-text models for assistant func-
tionalities. Leveraging LLMs for API calling involves the
conversion of natural language inputs into JSON configura-
tions to invoke corresponding APIs6. For instance, given the
input "Help me set an alarm at 7:30 AM" the model outputs
{API: "alarm(time="7:30 am")"}. Additionally, the model
generates an agent response: "Sure! Your alarm is set to

7:30 AM."

To adapt LLMs for this task, we create a synthetic dataset
with 5000 training samples and 2500 testing samples. Each
sample involves 8 conversation turns on average. Detailed
examples of this dataset are provided in appendix. The pre-
trained models undergoes fine-tuning on training set for 4
epochs, utilizing the Adam optimizer with a linear-decay
learning rate starting at 2e-5 and a weight decay of 0.01.

Table 6 shows that MobileLLM-350M demonstrates com-
parable intent and structure exact match scores to LLaMA-
v2 7B, where high intent scores indicate correct prediction
of the API user intends to call, while structural exact match
scores reflects the proficiency in predicting content within
API functions. Despite lower Rouge scores in MobileLLM-
350M compared to 7B models, it is crucial to note that API
calling prioritize correct API invocation. The results sug-
gest that certain common scenarios in on-device applications
are not particularly challenging, and smaller models like
MobileLLM-350M can adeptly handle it.

6https://platform.openai.com/docs/guides/function-calling

Table 6: API calling evaluation score. EMintent/EMstructure
measures the exact match in API calling. R1/RL refers to
Rouge-1/-L score measuring the quality of agent response.

Model EMintent EMstructure R1 RL
OPT-350M 56.1 38.6 37.1 35.3
Pythia-410M 62.2 44.7 43.1 41.1
BLOOM-560M 64.7 37.9 36.9 34.6
MobileLLM-350M 65.3 48.8 46.8 44.6
LLaMA-v2 7B 62.8 50.9 56.5 54.3

Figure 7: Comparison between BFloat16 model and 8-bit
weight 8-bit activation post-training quantized model.

3.4. Compatibility with Quantization

We further conduct per-token min-max post-training quan-
tization (PTQ) experiments on both MobileLLM and
MobileLLM-LS models with 125M and 350M model size
trained on 0.25T tokens. Figure 7 shows that employing
W8A8 PTQ yields a modest accuracy reduction of less than
0.5 points and remains compatible with layer-sharing.

3.5. Knowledge Distillation

So far, we trained compact models from scratch using next
tokens as hard labels. We explored Knowledge Distillation
(KD) of 125M and 350M models with LLAMA-v2 7B as
a teacher. Unfortunately KD increases training time (slow-
down of 2.6 � 3.2⇥) and exhibits comparable or inferior
accuracy to label-based training (details in appendix).

3.6. On-device Profiling

We measure the latency for MobileLLM-125M and
MobileLLM-LS-125M FP16 models via ExecuTorch7 on
iPhone 13 (iOS 17.2.1), with Metal Performance Shaders
(MPS) backend8. Model loading, initialization and execu-
tion time are reported in Table 7. Specifically, execution
time is averaged over 50 iterations.

Results in Table 7 reflects that through weight sharing and
7https://pytorch.org/executorch-overview
8https://pytorch.org/executorch/stable/build-run-mps.html
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Figure 4: Under comparable model sizes, deeper and thinner models generally outperform their wider and shallower coun-
terparts across various tasks such as zero-shot common sense reasoning, question answering, and reading comprehension.

Table 1: Ablation study on input-output embedding sharing with a 30-layer model with 512 embedding dimension, on
zero-shot common-sense reasoning tasks. Increased depth (" depth) model has 32 layers.

Model # Params ARC-e ARC-c BoolQ PIQA SIQA HS OBQA WinoGrande Avg.
Without emb-share 135M 43.6 26.1 58.0 62.5 42.6 36.5 37.5 51.5 44.8
+ emb-share 119M 44.4 26.0 56.2 62.8 43.1 35.9 36.0 52.6 44.6
+ emb-share, " depth 125M 43.3 26.4 54.4 64.7 43.5 36.9 38.5 52.6 45.0

efficient and compact model architecture.

We experiment on a 30-layer 125M model. In Table 1, we
demonstrate that sharing the input and output embeddings
reduces the number of parameters by 16M, approximately
11.8% of total parameters with a 0.2 points drop in aver-
age accuracy. The marginal accuracy drop can be readily
restored by reallocating the saved parameters to add more
layers. Increasing the depth to 32 layers produces a 0.4
points accuracy gain while still maintaining 10M fewer pa-
rameters compared to the original 135M model. Similar
results are also observed in 350M models. These findings
further suggest that embedding sharing is a valuable tech-
nique for maximizing weight utilization and optimizing
model performance given limited model storage budget.

2.2.4. NUMBER OF HEADS AND KV HEADS

We now investigate the optimal head size for small trans-
former models. The trade-off between more semantics per
head dimension and more non-linear combinations of multi-
ple heads is a key consideration in choosing the head size. In
addition, most previous studies have typically used an identi-
cal number of key-value heads to query heads in sub-billion
parameter language models. Instead, we found that grouped
query attention, which is initially designed for reducing key-
value cache size in LLMs (Chowdhery et al., 2023; Ainslie
et al., 2023), that can also effectively reduce redundancy
in key-value heads in small LMs. Grouped query attention
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Figure 5: Ablation study on number of heads and kv-heads.
Here, ratio denotes the number of heads divided by number
of kv-heads. Averaged accuracy on zero-shot reasoning
tasks is reported.

can be viewed as another form of weight-sharing for weight
re-utilization, where the number of key-value heads is 1/n
that of query heads, and the kv head is repeated n times
in computing attention scores and output together with the
query. Here, n 2 Z+ denotes a positive integer that the
number of query heads are divisible by.

To establish a solid foundation for a state-of-the-art small
transformer model, we conducted experiments to determine
the desirable head size on 125M and 350M models. Results
in Figure 5 show that using 16 query heads produces the best
results. Additionally, reducing the number of kv-heads from
16 to 4 resulted in comparable accuracy for the 125M model
and only 0.2 points accuracy drop in the 350M model with
almost 10% model size reduction. These results serve as a
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