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Can we trust the results of these systems?
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There are now hundreds of driverless vehicles rolling around on the streets

Artificial intelligence may put private data at risk
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How to publicly verify properties of a model while keeping it confidential?



Canonical Approach

o External Auditing : Estimation of model properties using API| queries, by a
third-party auditor



Canonical Approach

* External Auditing
* |Leaks model in the process, concerns if black-box auditing is even possible [1]
 Model Swapping : change the model post auditing or use different models for different queries

* Sensitive to the choice of reference auditing dataset

[1] Black-Box Access is Insufficient for Rigorous Al Audits Casper et. al.2024



Our Solution

o Zero-Knowledge Proofs, a cryptographic primitive

Prover Verifier




Zero-Knowledge Proofs (ZKPs) %

* Involve a prover and a verifier, who both have access to a circuit P
* enable prover to convince the verifier that the prover possess w s.t. P(w) = 1

* without revealing any additional information about w to the verifier
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Setup for Public Verification using ZKPs

.
I

Bank/Prover

query =

Prediction &
Fairness
Certificate

Proof for the
Certificate

/i\ — VX

Customer/Verifier




The two parts

Prediction & e Fairness Certification Algorithm in-the-clear

Fairness
Certificate

Proofforthe | o A ZKP system to prove the correct computation of this
Certificate certificate




Local Individual Fairness (from Literature)

A machine learning model f : R" — % is defined to be e-individually fair w.r.t
to a data point x* ~ & under some distance metricd : R" X R" —» R if

Vx:d(x*,x) e = f(x*) = f(x)

e QOur certification algorithm should output this €

e Notion of Sensitive attributes

» d : Weighted L2 distance with zero weights on the sensitive attributes
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Q1. Can our resulting certification algorithm distinguish b/n more vs. less fair
models?

 Radius (—JT fairness T
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Q1. Can our resulting certification algorithm distinguish b/n more vs. less fair
models?
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Q1. Can our resulting certification algorithm distinguish b/n more vs. less fair
models?
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Q2. What is the computational overhead of FairProof?
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Q2. What is the computational overhead of FairProof?
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Proof sizes of proofs generated by FairProof. Averaged over 100 random samples.



Summary

 /KPs might be a promising solution for auditing/verification requirements of
ML

* \We provide one example with fairness verification
* Future directions :
o Scalability to bigger models using smart solutions

* Different properties - where else can we use ZKPs”?



