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Nonlinear dimensionality reduction
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Manifold learning
Manifold learning may be a natural way of behavior in human cognition. 5

{The manifold ways of perception) 2000, Seung et al., Science



Motivation

a Manifold in a higher b Data points sampled € Graph representation @ Intrinsic manifold
dimensional space from the manifold of the dataset

€@ fMRI data f Brain states defined by @ Phase coherency states mapped into the two
phase coherency first cordinates of the intrinsic manifold
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No constraint on the mapping functions

independently

Intrinsic low-dimensional matrix

(1) the learned mapping functions lack explainability,

(2) such deep model may demand a relatively large
volume of training data,

(3) adapting a pre-trained model to a new dataset
may pose challenges.



Neuronal fibers

'BOLD signals' tme How does the structural
"""""" ’ foundation of the brain
shape its dynamic
functional activities?
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How does the coupling ' natomical projections

between SC and FC
contribute to the
emergence of cognition
and behavior?
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Preliminaries
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In this paper we show that while convolutions and attention are

both sufficient for good performance, neither of them are MLP

necessary. )

MLP-Mixer contains two types of layers: one with MLPs applied “ :

independently to image patches (i.e. “mixing” the per-location ~ | |

features), and one with MLPs applied across patches (i.e. )
- “mixing” spatial information). il
£aE -2, LADEN R R

Figure 1: MLP-Mixer consists of per-patch linear embeddings, Mixer layers, and a classifier head.
Mixer layers contain one token-mixing MLP and one channel-mixing MLP, each consisting of two
fully-connected layers and a GELU nonlinearity. Other components include: skip-connections,
dropout, and layer norm on the channels.
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Methods

New Mapping Function on Riemannian

[ max(Xq1)
max(Xo1)

max(X12)
max(Xoo)

Manifold Constrained by Graph X = : ;
Scattering Transforms max(Xn1)  max(Xn2)
Harmonic wavelet ~ FC matrix Supra-FC X

X Symy,
w; = [yf],_, X X = P'XP € RVVK @<

max(Xqn)
max(Xop )

max(Xyn) |
We seek to use the pooling
operation to regain the SPD
property while reducing the
dimensionality.

The MLP-Mixer architecture of
positive mapping P'XP on
Riemannian manifold can be
formulated as:

XI F1 — Umw{LN[JCUIumn(LN(]PTXI))IP]}
X;1 = max-pooling(X;, 1)

- 1 - -
XHl:E(an‘f‘(XHl)T)



Methods

DeepHoloBrain: A Proof-of-Concept Approach to Explore the Enigma of
Neural Dynamics Through the Insight of Deep Model

Scattering Transforms: Neuroscience Insights.
; N FC matri . .
Stepping Stone between Deep —— e £ The oscillation patterns of each
: _ : Time course matrix H NK . .
Learning and SC-FC Couplings. ' ‘ harmonic wavelet ¥, constrained by
N
_ encodes pairwise correlations NI N T } the local topology of St.rUCturaI
FC matrix X petyeen two time course of connectome, characterize the
X = gy neural activities ! T N frequency-specific neural activities
h; = [hy (1) by (2)... hi(T)] .
supported by the underlying neural
circuit.
FC matrix X Augment Augment
. Augmented time course Z
We study each column in 3 : : k 1t ;
M, which is the whole.brain NK The inner project (y;” h*) over time
Augmented time  gnapshot of neural activities I J essentially allows us to modulate the
course matrix ht € RN at time t e o . o
We fi NK; T observed neural activity signals with the
7 e first apply ] ) i )
to each pre-define bandpass filters, which gives
_ NKxT snapshot k', yielding an { . oty ae
Z=PHEeR augmented fime course — rl.s;e.to coupled nfeural oscillations at
matrix . distinct frequencies.
17
After that, the inner project of Z records interference patterns generated by two SC-

T i . . .
77!  @ndZiresultsinthe modulated neural activity signals.



) Results

Table 1. Results on brain task recognition for HCP-Aging dataset.

METHODS ACCURACY RECALL F1-SCORE

SPDNET 0.984L 0.003 0.9754£0.004 0.9784+ 0.004
CDL 0.976x 0.003 0.962+ 0.005 0.966x 0.005
LEML 0.961= 0.022 0.903£ 0.039 0.929+ 0.036
SPDML  0.944+L 0.015 0.9084&0.027 0.9204+0.019
AIM 0.952+=0.014 09114£0.016 0.929+0.015
RSR 0.966= 0.005 0.944+0.010 0.951 £=0.008
DEEPO2P 0.977L£ 0.004 0.963L£0.006 0.969+L 0.005
OURS 0.995+ 0.003* 0.989+L 0.003* 0.993+ 0.003*
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Figure 4. Left: Uncovered anatomical regions (using node-wise
attention) for task VISMOTOR and task FACENAME, respectively.
Right: Oscillation patterns underlying the more relevant harmonic
frequencies for VISMOTOR and FACENAME tasks, revealing
task-specific wavelet dynamics.
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Figure 5. Consistency evaluation for region-specific (15! and 3" @
columns) and frequency-specific (274 and 4" columns) attentions
learned from OASIS (left) and ADNI (right).

METHODS ACCURACY RECALL F1-SCORE
SPDNET 0.871+0.018 0.5934+0.017 0.613+0.024
CDL 0.827+£ 0.623 0.570+£ 0.062 0.581 £0.047
LEML 0.796+ 0.193 0.624+ 0.045 0.632+0.117
SPDML 0.786+ 0.148 0.7394+ 0.038 0.6971+0.091
AIM 0.816+ 0.098 0.540+ 0.043 0.53940.072
RSR 0.840+ 0.020 0.690+ 0.020 0.689 +£0.028
DEEPO2P 0.857 £ 0.019 0.684+0.02 0.675+0.021
QOURS 0.8854+0.017* 0.740=L 0.045* 0.6974+ 0.041*
SPDNET 0.80040.085 0.670% 0.067 0.627+ 0.090
CDL 0.710£0.095 0.500x=0.018 0.41540.064
LEML 0.7044+0.095 0.523+0.019 0.47440.065
SPDML  0.672+£ 0.079 0.543+ 0.037 0.529+ 0.055
AIM 0.708+ 0.089 0.500+£ 0.000 0.413%+0.032
RSR 0.7404+= 0.106 0.610+ 0.059 0.608+ 0.080
DEEPO2P 0.760+£ 0.089 0.614+ 0.068 0.6254+0.082
OURS 0.820+ 0.071* 0.625+ 0.049* 0.64710.079*




) Results

Generality as A Pre-trained Model.

One of the critical challenges of
deploying computer-assisted
diagnosis in clinical routine is
the limited sample size,
especially for disease cohorts

We pre-train a regression model
based on Montreal Cognitive
Assessment (MoCA) score on
HCP-A data, and fine-tune a
classification mode on ADNI
data.

ACCURACY RECALL FI1-SCORE PRECISION

SPDNET+ 0.7120

CDL+ 0.6640
LEML+ 0.6080
SPDML+  0.5880
AIM+ 0.6160
RSR+ 0.6880

DEEPO2P+ 0.6960
OURS+ 0.7400%*

0.7120
0.5253
0.5501
0.5803
0.5356
0.6880
0.6880
0.6103%

0.6632
0.5168
0.5466
0.5581
0.5356
0.8690
0.5971
0.6081%

0.7409
0.5397
0.5462
0.5671
0.5356
0.4716
0.7369
(0.7892%
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