Differentially Private Worst-group
Risk Minimization

Xinyu Zhou, Raef Bassily
The Ohio State University
ICML 2024



Worst-group Risk Minimization

Given p distributions {Dl, D,, ... Dp}, the worst-group population risk minimization problem is
defined as

minmax {Lp,(W) £ E,.p,f(w,2)}

Equivalently v%%ﬁ%%x {gb(w, A) £ Yiepr i LDi(W)}
p

When each distribution D; is observed by a dataset S;, the worst-group empirical risk minimization

problem is defined as
. . 1
minmax {Ls, (W) =g

%5, LW, 2))

Equivalently vrgleivr&)rLréaAlx {cﬁ(w, A £ Yiep i LSi(W)}
p

» £(w, z) is a convex, L-Lipschitz loss function bounded by B

» Each group distribution is accessed via a sample oracle



Applications

* Robust Learning

* find a model that works well for all group distributions

* Learning with fairness

e prevent the learner from overfitting to certain groups at the cost of others
* Collaborative learning, Agnostic federated learning

And more...



Differential Privacy (DP)

A(S) A(S’)
A = A ,
S Random coins S’ Random coins

Differential Privacy (DP)

A randomized algorithm A is said to be (¢, §)-DP if for any pair of datasets S and S’
differing in one point and any event O in the range of A4, it holds that

P(A(S) €0) <e°P(A(S')e€e0)+6



Objective

* We study the worst-group risk minimization problem under (€, 6)-DP

e Given W, a convex and compact subset of R%, the goal is to privately find a model

w € W with small

» excess worst-group population risk

E(w, 1D; maxL w) — minmax Lp.(w
(w, {DAT,) = max Lp, (w) — minmax Ly, ()

 excess worst-group empirical risk

E S; max L — minmax L
(W{ } 1) [p>]< S; (w) EIW E[p>]< S; (W)



Contributions

* We give two algorithms for DP worst-group population risk minimization

 Minimax phased ERM that attains O (\/7 p\/—) rate.

* This rate is optimal in the offline setting.

~ 1/2
* DP-OCO approach that attains O Py |24 4 rate.
K Ke? Ke

* We give an algorithm for DP worst-group empirical risk minimization
pVd )

Ke

that attains nearly optimal rate of O (

K total number of samples from all groups
p: number of groups
d: problem dimension




Minimax Phased ERM — Stability Lemma

Regularized ERM objective: given arbitrary w’ € W and dataset collection {Si}f=1 € Z™¥P

p p
u 2
F(w, 1) = ZAiLSi(W) + 7W||W —w'||” = MAE AilogA;
i=1 =1

Stability lemma:

Let (W /T) be the saddle point of F(w, A). Forany w € W, we have

L2 LB B )

~ 2
E Lp. (W)] — max Lp, =0( —w'
gt Loy )] = max Loyw) = O (mullw —w'Il” + i+ S04 e+ 2




Minimax Phased ERM - Overview

* Setn=K/p, T =log(n),andn = é(min{e/\/a,,/p/l( })
* Atiterationt =1, ..T:

1. Lletn, =n/T,n =n2"" uj = 1/(nne) and pz = 1/(yn)
2. Sample S, = {S, ...Sp} € Z™*P from the sample oracles
3. Solve for the approximate saddle point (Wt,it) of

€

4. Obtain w; = W, + N(0,0£1) witho, =0 (‘/log(n)log(l/S)nnt)

* Output wr

p . p
U 2
Fi(w, 1) = Zli Lsi(W) +7W||W_Wt—1|| _Mﬁzlilogﬂi
i=1 i=1

With properly chosen parameters, the algorithm is (€, §)-DP and we have

E [max LDi(WT)] — minmax Ly (W) = 0 \/;

i€[p] WEW i€[p]

Optimal non-private rate

p n P\/H Optimal in the offline
Ke setting

N

Cost of privacy



DP-OCO Based Algorithm

Algorithm overview:

* Cast the objective mel‘?/r/{lag ¢(w, 4) into a two-player zero-sum game.
€

* min-player: any generic DP-OCO algorithm.

e max-player: adversarial multi-armed bandit algorithm (EXP3 [2]) with privatized gradient estimate.

* One can show that the expected excess risk is bounded by the sum of the regrets of both players.

By instantiating the DP-OCO algorithm with DP-FTRL in [3], our algorithm is (¢, 6)-DP and

~ \/ﬁ D d1/2
® [y o)~ gl b = O Vi * i+ [T

* Match the non-private optimal rate when d = 0(p?).




Worst-group Empirical risk minimization

Based on a private version of the multiplicative group reweighting method [4].

e Atiterationt=1,..T:

1. Sample iy ~ A; and a minibatch B; from §;..

2. Update w;, 1 = NoisySGD(w¢, B;)
3. Privatized losses L; = {LSt(Wt) + Lap (%,/Tlog(l/(S))}
4. Update A;4q = Acexp(—nL;)

_ 1
* Outputw = ;ZZ=1 Wy

.. R~ d
Excess worst-group empirical risk: ( %)

- The rate is nearly optimal.
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