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Worst-group Risk Minimization

Given 𝑝 distributions 𝐷1, 𝐷2, …𝐷𝑝 , the worst-group population risk minimization problem is 

defined as

When each distribution 𝐷𝑖 is observed by a dataset 𝑆𝑖, the worst-group empirical risk minimization 

problem is defined as

min
𝑤∈𝑊

max
𝑖∈[𝑝]

{𝐿𝐷𝑖 𝑤 ≜ E𝑧∼𝐷𝑖ℓ(𝑤, 𝑧)} 

Equivalently min
𝑤∈𝑊

max
𝜆∈Δp

𝜙 𝑤, 𝜆 ≜ σ𝑖∈ 𝑝 𝜆𝑖 𝐿𝐷𝑖 𝑤

min
𝑤∈𝑊

max
𝑖∈[𝑝]

{𝐿𝑆𝑖 𝑤 ≜
1

|𝑆𝑖|
σ𝑧∼𝑆𝑖

ℓ(𝑤, 𝑧)} 

Equivalently min
𝑤∈𝑊

max
𝜆∈Δp

𝜙 𝑤, 𝜆 ≜ σ𝑖∈ 𝑝 𝜆𝑖 𝐿𝑆𝑖 𝑤

➢ ℓ 𝑤, 𝑧  is a convex, 𝐿-Lipschitz loss function bounded by 𝐵

➢ Each group distribution is accessed via a sample oracle



Applications

• Robust Learning

• find a model that works well for all group distributions

• Learning with fairness

• prevent the learner from overfitting to certain groups at the cost of others

• Collaborative learning, Agnostic federated learning

And more...



Differential Privacy (DP)

Differential Privacy (DP)

A randomized algorithm 𝐴 is said to be (𝜖, 𝛿)-DP if for any pair of datasets 𝑆 and 𝑆′
differing in one point and any event 𝑂 in the range of 𝐴, it holds that

𝑃 𝐴 𝑆 ∈ 𝑂 ≤ 𝑒𝜖𝑃 𝐴 𝑆′ ∈ 𝑂 + 𝛿



Objective

• We study the worst-group risk minimization problem under (𝜖, 𝛿)-DP

• Given 𝑊, a convex and compact subset of ℝ𝑑, the goal is to privately find a model 

𝑤 ∈ 𝑊 with small

• excess worst-group population risk

• excess worst-group empirical risk 

ℇ 𝑤, 𝐷𝑖 𝑖=1
𝑝

= max
𝑖∈[𝑝]

𝐿𝐷𝑖 𝑤 − min
𝑤∈𝑊

max
𝑖∈ 𝑝

𝐿𝐷𝑖 𝑤

ℇ 𝑤, 𝑆𝑖 𝑖=1
𝑝

= max
𝑖∈[𝑝]

𝐿𝑆𝑖 𝑤 − min
𝑤∈𝑊

max
𝑖∈ 𝑝

𝐿𝑆𝑖 𝑤



Contributions

• We give two algorithms for DP worst-group population risk minimization

• Minimax phased ERM that attains ෨𝑂
𝑝

𝐾
+

𝑝 𝑑

𝐾𝜖
rate.

• This rate is optimal in the offline setting.

• DP-OCO approach that attains ෨𝑂
𝑝

𝐾
+

𝑝

𝐾𝜖2
+

𝑑1/2

𝐾𝜖
rate.

• We give an algorithm for DP worst-group empirical risk minimization

that attains nearly optimal rate of ෨𝑂
𝑝 𝑑

𝐾𝜖
.

𝐾: total number of samples from all groups
𝑝: number of groups 
𝑑: problem dimension



Minimax Phased ERM – Stability Lemma

Regularized ERM objective: given arbitrary 𝑤′ ∈ 𝑊 and dataset collection 𝑆𝑖 𝑖=1
𝑝

∈ 𝑍𝑛×𝑝

𝐹 𝑤, 𝜆 =

𝑖=1

𝑝

𝜆𝑖𝐿𝑆𝑖(𝑤) +
𝜇𝑤
2

𝑤 − 𝑤′ 2
− 𝜇𝜆

𝑖=1

𝑝

𝜆𝑖log𝜆𝑖

Stability lemma:

Let 𝑤, ሚ𝜆  be the saddle point of 𝐹 𝑤, 𝜆 . For any 𝑤 ∈ 𝑊, we have

E max
𝑖∈ 𝑝

𝐿𝐷𝑖 𝑤 −max
𝑖∈ 𝑝

𝐿𝐷𝑖 𝑤 = ෨𝑂 𝜇𝑤 𝑤 − 𝑤′ 2
+ 𝜇𝜆 +

𝐿2

𝑛𝜇𝑤
+

𝐿𝐵

𝑛 𝜇𝑤𝜇𝜆
+

𝐵

𝑛



Minimax Phased ERM - Overview

With properly chosen parameters, the algorithm is (𝜖, 𝛿)-DP and we have

E max
𝑖∈ 𝑝

𝐿𝐷𝑖 𝑤𝑇 − min
𝑤∈𝑊

max
𝑖∈ 𝑝

𝐿𝐷𝑖 𝑤 = ෨𝑂
𝑝

𝐾
+
𝑝 𝑑

𝐾𝜖

Cost of privacyOptimal non-private rate

Optimal in the offline 
setting

• Set 𝑛 = 𝐾/𝑝, 𝑇 = log(𝑛), and 𝜂 = ෨𝑂 min 𝜖/ 𝑑, 𝑝/𝐾

• At iteration 𝑡 = 1,…𝑇:

1. Let 𝑛𝑡 = 𝑛/𝑇, 𝜂𝑡 = 𝜂2−𝑡, 𝜇𝑤
𝑡 = 1/(𝜂𝑡𝑛𝑡) and 𝜇𝜆

𝑡 = 1/(𝜂𝑛)

2. Sample  ሚ𝑆𝑡 = 𝑆1, … 𝑆𝑝 ∈ 𝑍𝑛𝑡×𝑝 from the sample oracles 

3. Solve for the approximate saddle point (𝑤𝑡 , ሚ𝜆𝑡) of  

𝐹𝑡 𝑤, 𝜆 =

𝑖=1

𝑝

𝜆𝑖 𝐿𝑆𝑖 𝑤 +
𝜇𝑤
𝑡

2
𝑤 − 𝑤𝑡−1

2
− 𝜇𝜆

𝑡 

𝑖=1

𝑝

𝜆𝑖𝑙𝑜𝑔𝜆𝑖

4. Obtain  𝑤𝑡 = 𝑤𝑡 + 𝑁(0, 𝜎𝑡
2𝐼) with 𝜎𝑡 = 𝑂

log 𝑛 log 1/𝛿 𝜂𝜂𝑡

𝜖

• Output 𝑤𝑇



DP-OCO Based Algorithm

Algorithm overview: 

• Cast the objective min
𝑤∈𝑊

max
𝜆∈Δ

𝜙(𝑤, 𝜆) into a two-player zero-sum game.

• min-player: any generic DP-OCO algorithm. 

• max-player: adversarial multi-armed bandit algorithm (EXP3 [2]) with privatized gradient estimate.

• One can show that the expected excess risk is bounded by the sum of the regrets of both players.

By instantiating the DP-OCO algorithm with DP-FTRL in [3],  our algorithm is (𝜖, 𝛿)-DP and

E max
𝑖∈ 𝑝

𝐿𝐷𝑖 𝑤𝑇 − min
𝑤∈𝑊

max
𝑖∈ 𝑝

𝐿𝐷𝑖 𝑤 = ෨𝑂
𝑝

𝐾
+

𝑝

𝐾𝜖2
+

𝑑1/2

𝐾𝜖

• Match the non-private optimal rate when 𝑑 = ෨𝑂(𝑝2).



Worst-group Empirical risk minimization

Excess worst-group empirical risk: ෨𝑂
𝑝 𝑑

𝐾𝜖

- The rate is nearly optimal.

• At iteration 𝑡 = 1,…𝑇:

1. Sample 𝑖𝑡 ∼ 𝜆𝑡 and a minibatch 𝐵𝑡 from 𝑆𝑖𝑡.

2. Update 𝑤𝑡+1 = Nois𝑦SGD(𝑤𝑡 , 𝐵𝑡)

3. Privatized losses 𝐿𝑡 = 𝐿𝑆𝑡 𝑤𝑡 + Lap
𝑝

𝐾𝜖
𝑇log 1/𝛿

4. Update 𝜆𝑡+1 = 𝜆𝑡exp(−𝜂𝐿𝑡) 

• Output ഥ𝑤 =
1

𝑇
σ𝑡=1
𝑇 𝑤𝑡

Based on a private version of the multiplicative group reweighting method [4].
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