Dual Operating Modes of In-Context Learning

Zigian Lin & Kangwook Lee

LLM’s In-Context Learning (ICL)
= Learning a new task + Recognizing a known task

@ Our model: anextension of [1, 2]:
(A) Linear functions (y = wlx)
(B) x distribution & w distribution are dependent
(C) TF is perfectly pretrained with MSE, i.e., MMSE
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An example distribution

Many in-context samples

=» Sufficient information about y/x
=» The posterior mean converges tow
=» Learning a new task

Few in-context samples
=» Information about x is dominant
=» A correct task retrieved under some conditions
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Given the following examples, 1@5=7 6 @5=>15625
find the value of X without any explanation. — 6 @3=>729
il 421310_913 x 3@4=>64
hello=>5  whether=>7 black=>5 5 @8 _ {13 (93.05%) o
forecast=>8 amazing=>7 apple=>5 14 (0.59%) 423 g
banana => X 2@3=>9
, 1@5=7 5@2=>7
LLMSs’ answer: 6 / 2@ 10=13 Let's think step by step
Hint: It's related to the exponential function. A@4=9 LLMSs’ answer:
2@8=>64 3@5=>125 2@5=>25 Let's start by identifying
th tternin th
4 @ 3=>X +30 demos / opeeiraaatioens givene.
LLMs’ answer: 64 )( 13 (11.98%) | Based on these
Banana => Black Apple => Gray @8 ={ cooations:
14 (66.44% =
Watermelon => Cherry => Purple ( 0) | 5@2=25. x
Strawberry => Q. Can you classify each of the cases above
LLMs’ answer: Red ? into learning-dominant and retrieval-dominant?

Key Research Questions
Q1. Can we develop a mathematical model that can explain the dual operating modes? @
Q2. Can we explain the real LLMs’ phenomena with our model & analysis? @@

Our Contributions
@ We rigorously explain the dual operating modes of ICL via a mathematical model

@ We provide the first theoretical explanation @ We predict and empirically confirm
for the early ascent phenomenon the bounded efficacy of zero-shot ICL

@ The early ascent phenomenon: incorrect retrieval + learning
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