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Multi-Round Protein Design Experiments
We induce MFCS by an ML agent actively selecting each point with query functions
                                          , for utility function ut .

Our proposed Split CP MFCS methods allow for complex models like neural 
networks and maintain coverage even at later design steps t.
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Recap and Future Directions

Predictive 
Confidence 
Interval/Set:

Coverage Validity 
Guarantee:

𝑷 𝐘𝐭𝐞𝐬𝐭 ∈ $𝑪 𝑿𝐭𝐞𝐬𝐭 ≥ 𝟏 − 𝜶 

Standard CP

…

Non-Exchangeable Data, eg:
• Data collected by AI agents
• Dynamic time series
• Structured data
• …

Exchangeable (e.g., IID)
Calibration & Test Data

𝑷𝒁𝐜𝐚𝐥 = 𝑷𝒁𝐭𝐞𝐬𝐭

?

🤖🤖
🤖

Data Distribution CP Algorithm

Black-Box
AI/ML Model

🤖

Many Promising Future Directions! E.g.,
• Further addressing practical bottlenecks
• Safe decision making
• Other loss functions
• Conditional calibration
• …
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