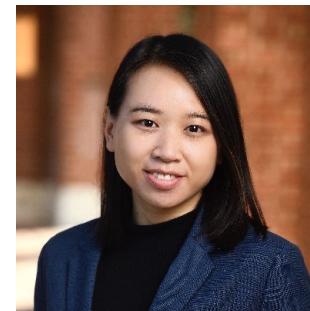


Conformal Validity Guarantees Exist for Any Data Distribution (and How to Find Them)

Drew Prinster^{*1}

Samuel Stanton^{*2}



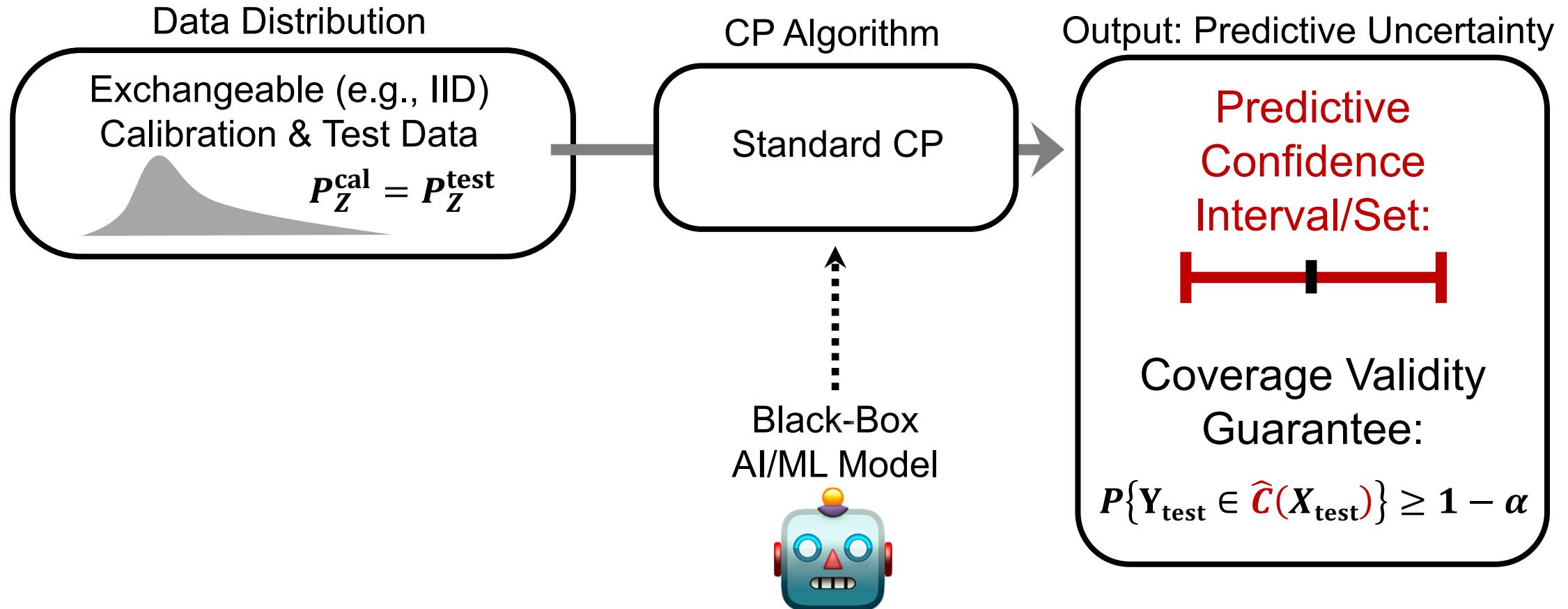
Anqi Liu¹

Suchi Saria¹

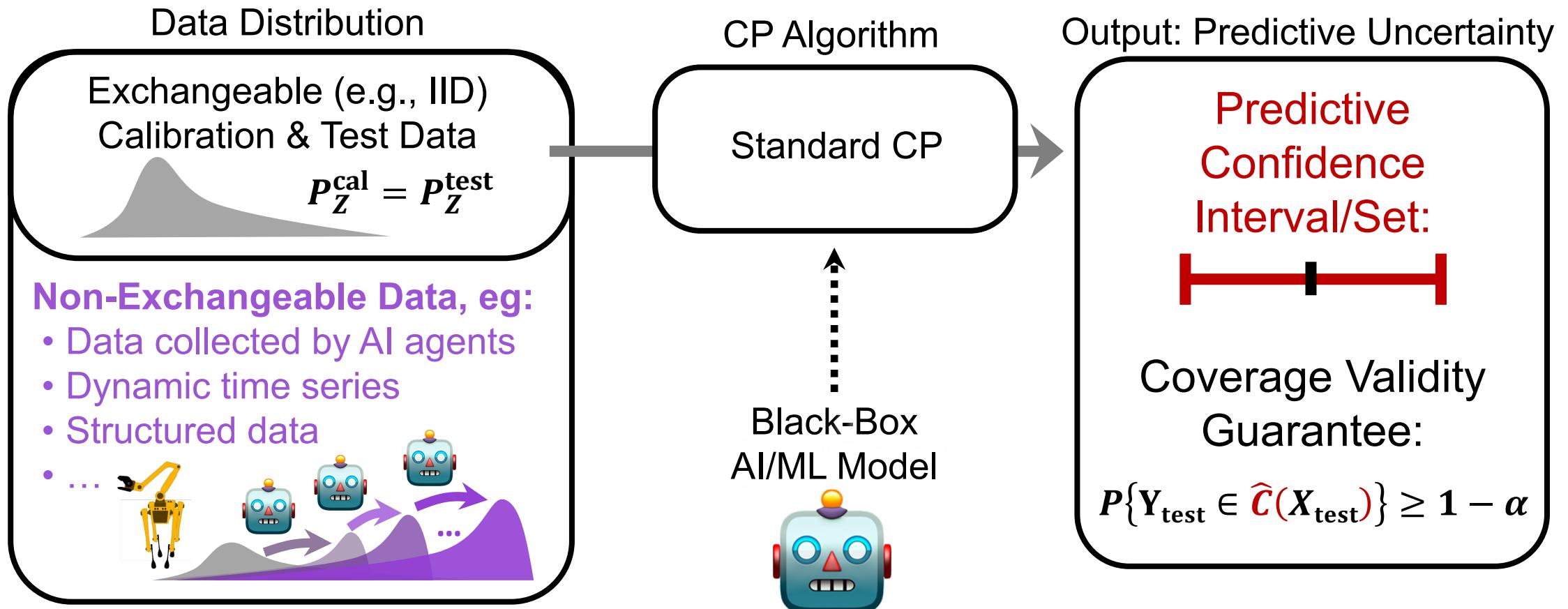
Roadmap

- **Introduction:** AI Uncertainty Quantification via Conformal Prediction
- Key Background
- Theory and Method Contributions
- Experiments
- Discussion

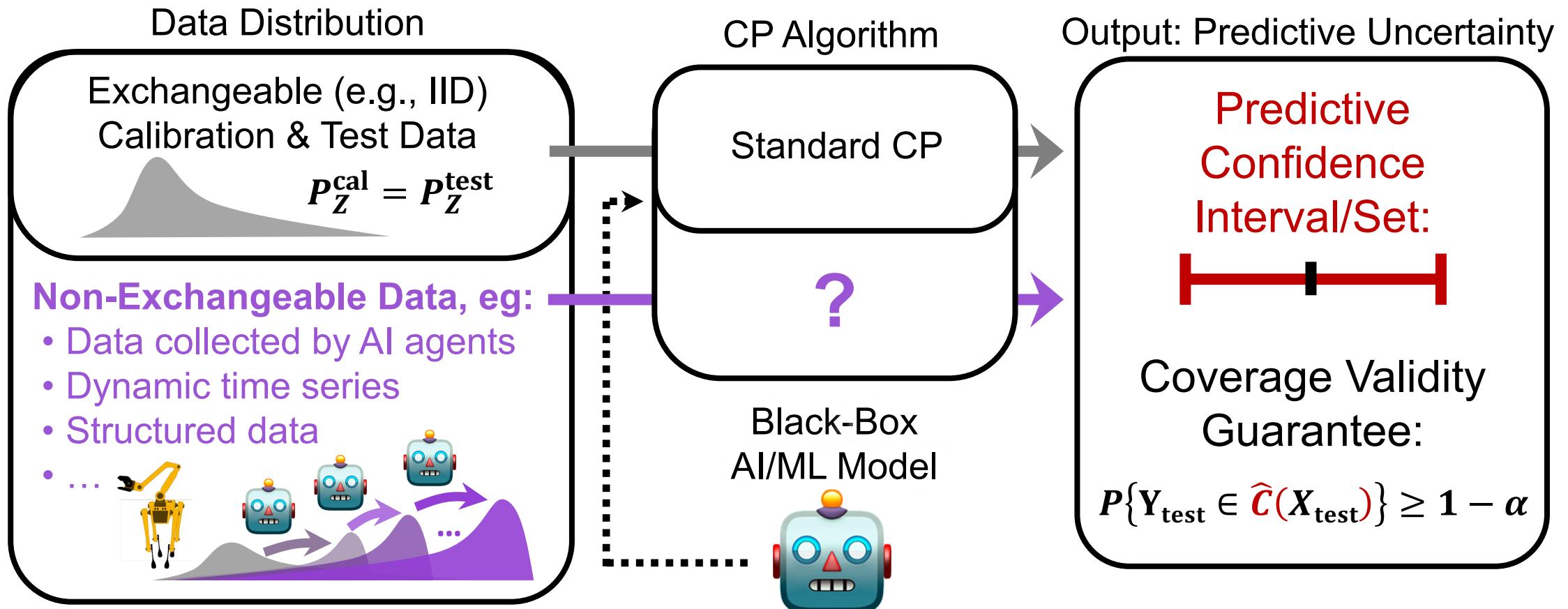
Introduction: AI Uncertainty Quantification via Conformal Prediction (CP)



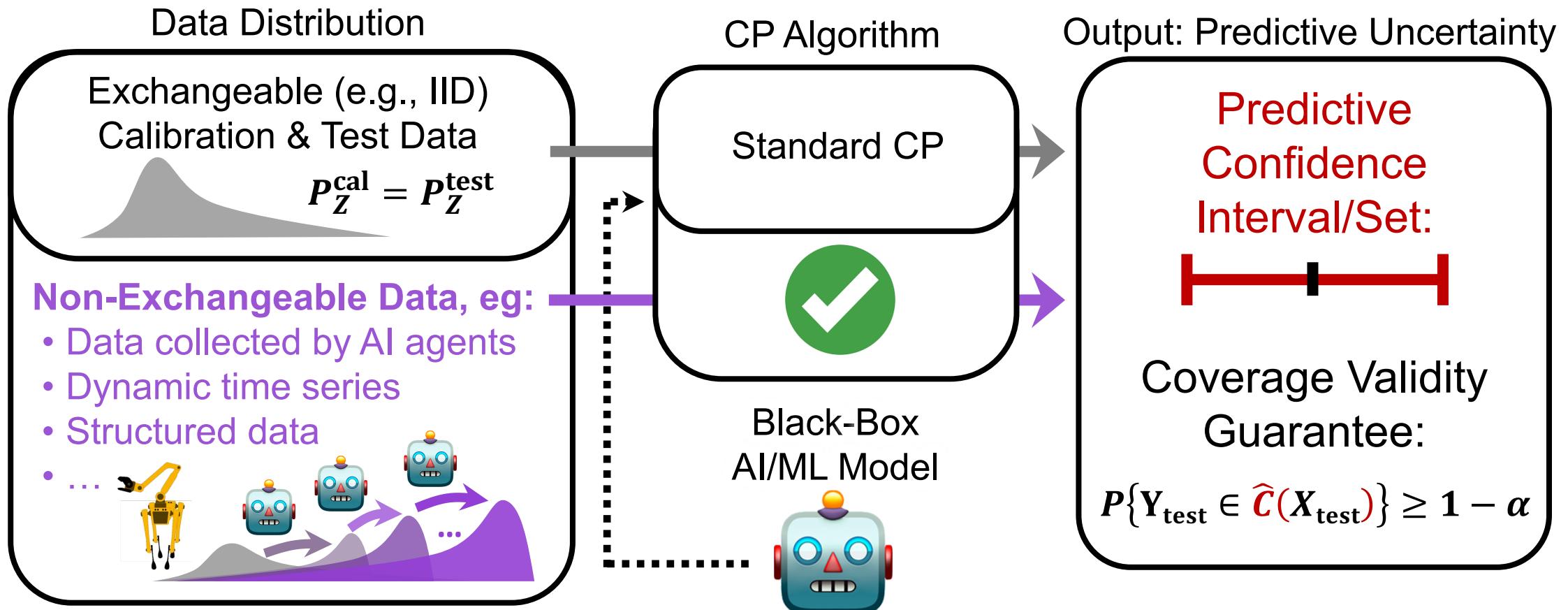
Introduction: AI Uncertainty Quantification via Conformal Prediction (CP)



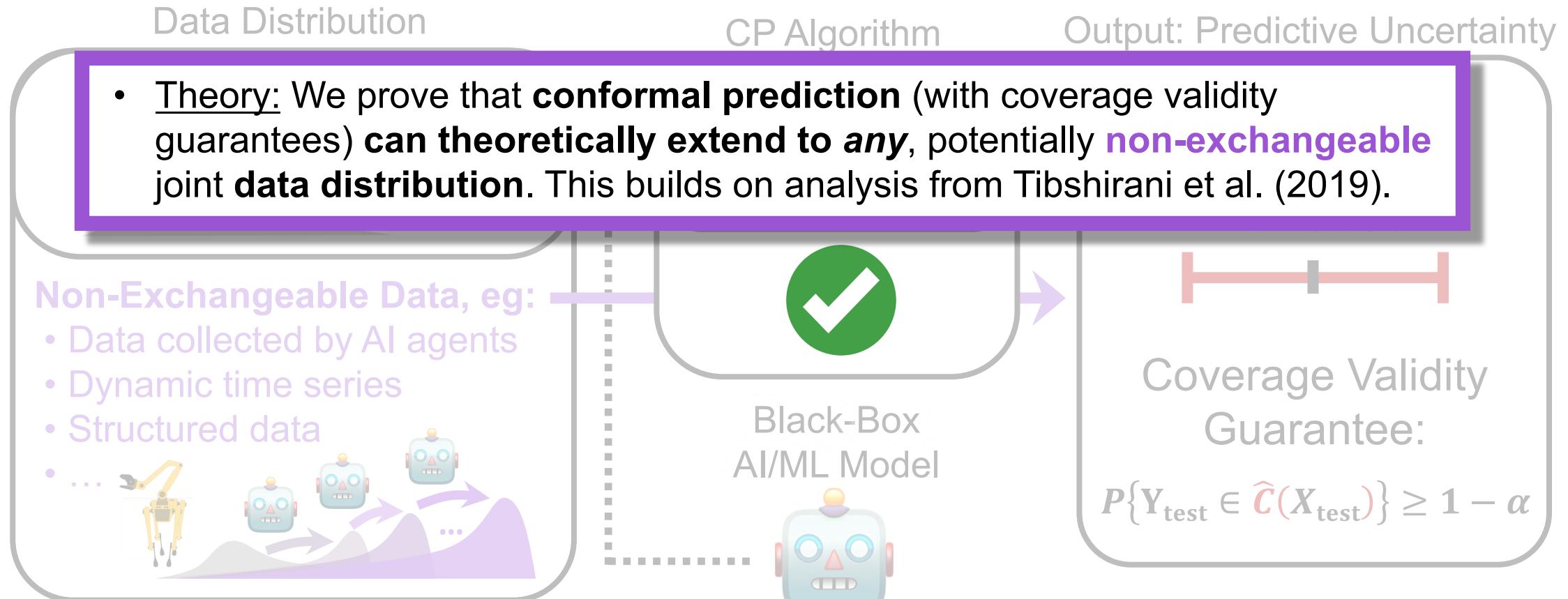
Introduction: AI Uncertainty Quantification via Conformal Prediction (CP)



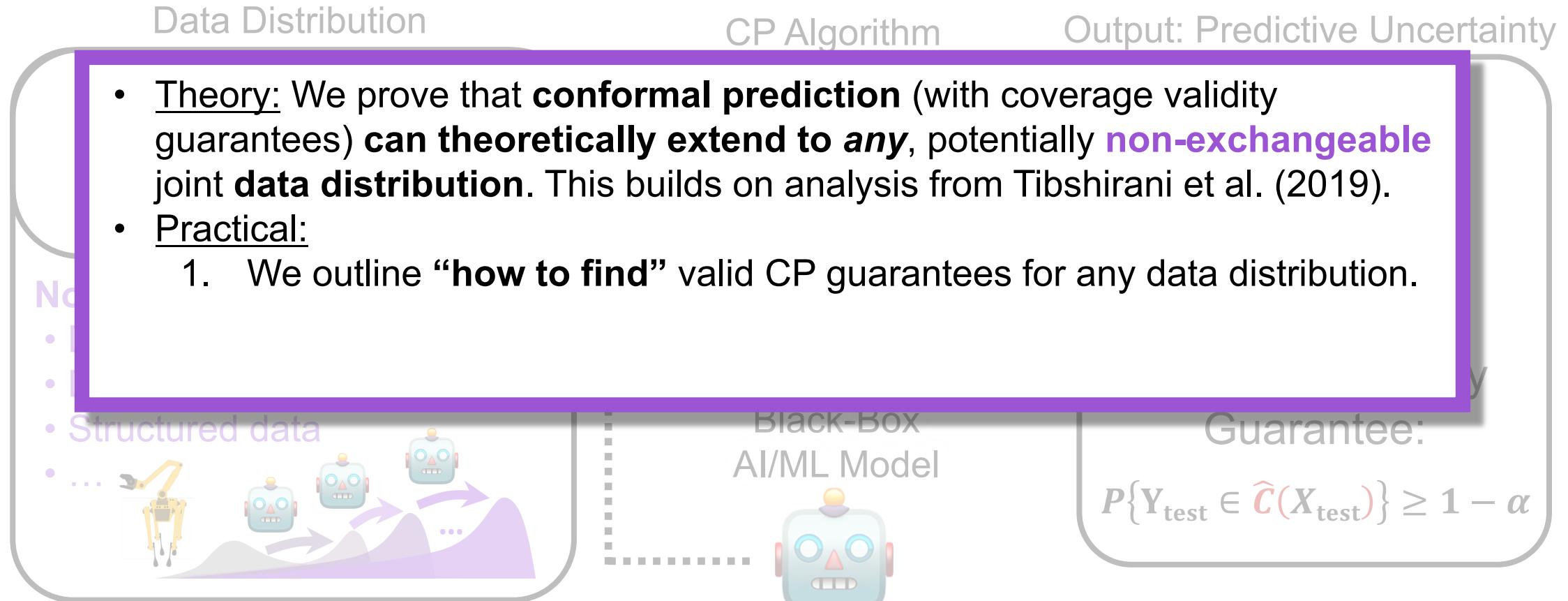
Introduction: AI Uncertainty Quantification via Conformal Prediction (CP)



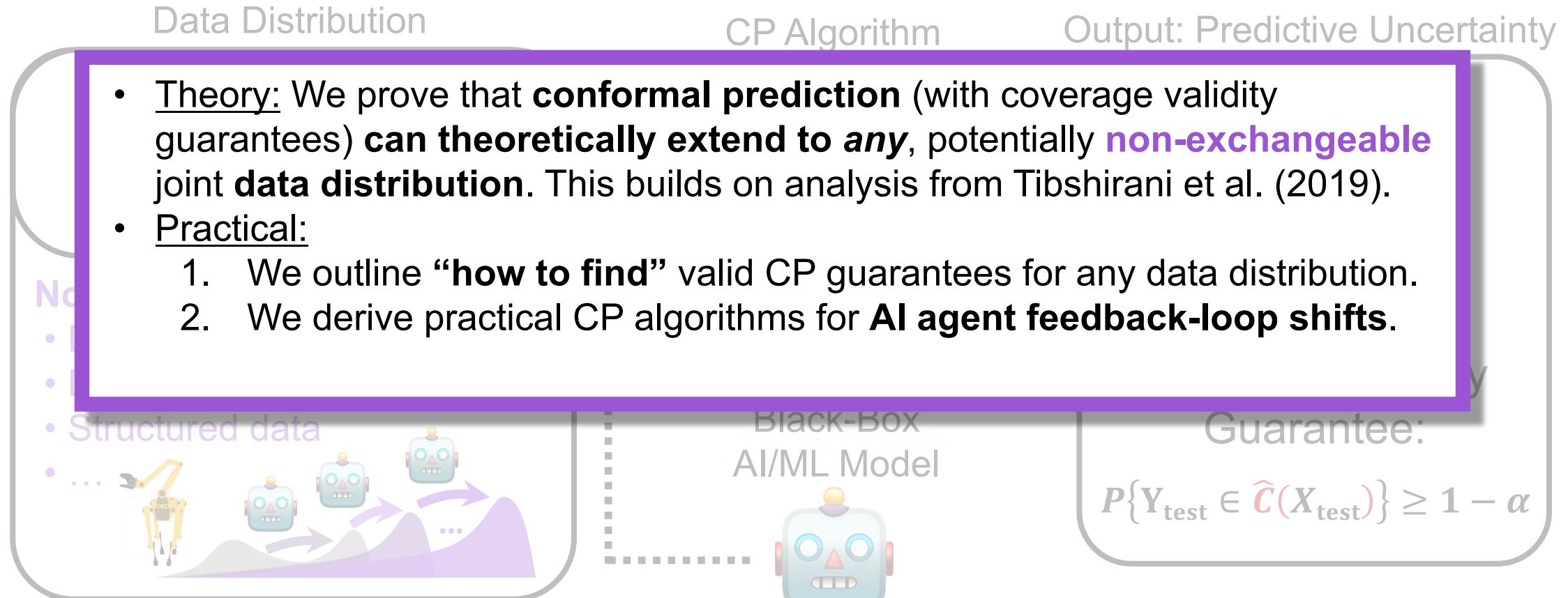
Introduction: AI Uncertainty Quantification via Conformal Prediction (CP)



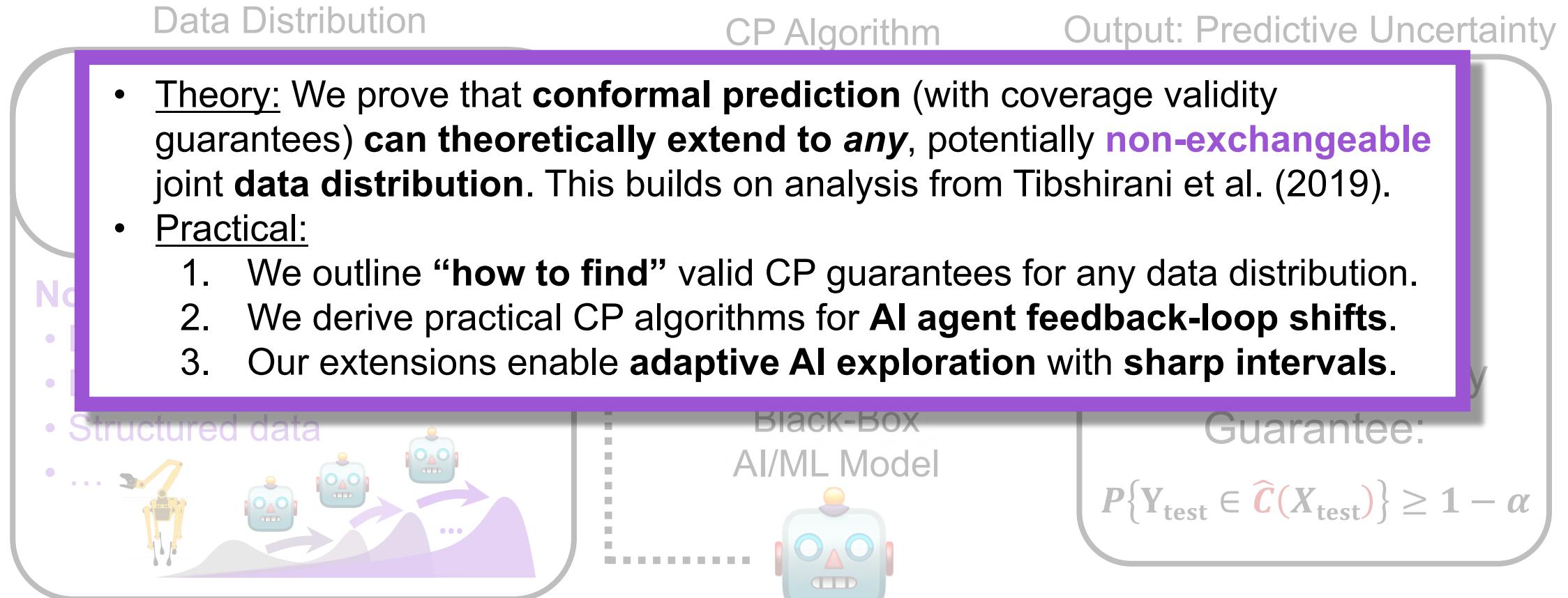
Introduction: AI Uncertainty Quantification via Conformal Prediction (CP)



Introduction: AI Uncertainty Quantification via Conformal Prediction (CP)



Introduction: AI Uncertainty Quantification via Conformal Prediction (CP)



Roadmap

- **Introduction**
- **Key Background:** Weighted Conformal Prediction for Covariate Shifts
- **Theory and Method Contributions**
- **Experiments**
- **Discussion**

Background: Weighted CP for Covariate Shifts

Vovk et al.
(2005)

Exchangeable Data
≈ No Shift

$$P_Z^{\text{cal}} = P_Z^{\text{test}}$$

E.g., IID

P_Z invariant.

Background: Weighted CP for Covariate Shifts

Vovk et al.
(2005)

Tibshirani et al.
(2019)

Exchangeable Data
≈ No Shift

E.g., IID

P_Z invariant.

Weighted Exchangeable Data
≈ Independent Shifts

E.g., Standard Covariate Shift (SCS)

$P_{Y|X}$ invariant.

Background: Weighted CP for Covariate Shifts

Vovk et al.
(2005)

Exchangeable Data
≈ No Shift

E.g., IID

P_Z invariant.

Tibshirani et al.
(2019)

Weighted Exchangeable Data
≈ Independent Shifts

E.g., Standard Covariate Shift (SCS)

$P_{Y|X}$ invariant.

Fannjiang et al.
(2022)

Pseudo-Exchangeable Data
≈ Limited Dependent Shifts

E.g., **Feedback** Covariate Shift (FCS)

$P_{Y|X}$ invariant.

Background: Weighted CP for Covariate Shifts

Vovk et al.
(2005)

Exchangeable Data
≈ No Shift

$$P_Z^{\text{cal}} = P_Z^{\text{test}}$$

E.g., IID

P_Z invariant.

Tibshirani et al.
(2019)

Weighted Exchangeable Data
≈ Independent Shifts

$$P_X^{(0)} \quad P_X^{(1)}$$

E.g., Standard Covariate Shift (SCS)

$P_{Y|X}$ invariant.

Fannjiang et al.
(2022)

Pseudo-Exchangeable Data ≈ Limited Dependent Shifts

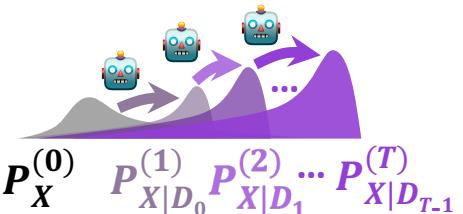
$$P_X^{(0)} \rightarrow P_X^{(1)|D_0}$$

E.g., **Feedback** Covariate Shift (FCS)

$P_{Y|X}$ invariant.

Our Paper

Any Data Distribution ≈ Any Shifts


$$P_X^{(0)} \quad P_X^{(1)|D_0} \quad P_X^{(2)|D_1} \dots P_X^{(T)|D_{T-1}}$$

E.g., **Multistep** Feedback Covariate Shift (MFCS)*

*MFCS is similar to a setting in Nair & Janson (2023)

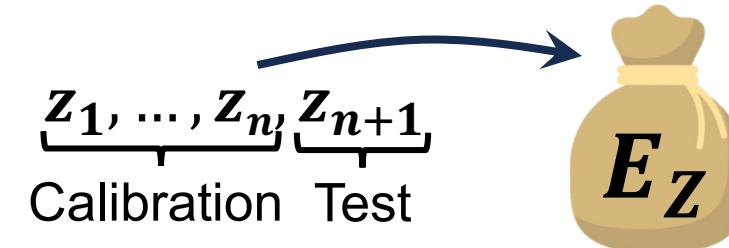
$P_{Y|X}$ invariant.

Roadmap

- **Introduction**
- **Key Background**
- **Theory and Method Contributions:**
 - Revisiting Tibshirani et al. (2019)'s Alternate CP Proof
 - Key Insight
 - Main Result: Conformal Validity Guarantees Exist for Any Data Distribution
 - “How to Find Them”
- **Experiments**
- **Discussion**

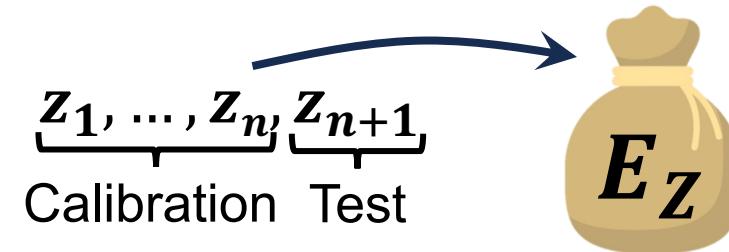
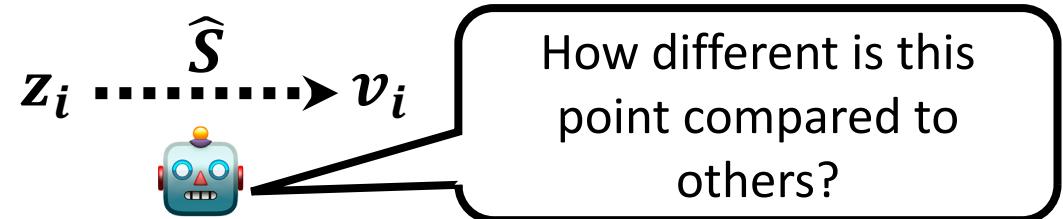
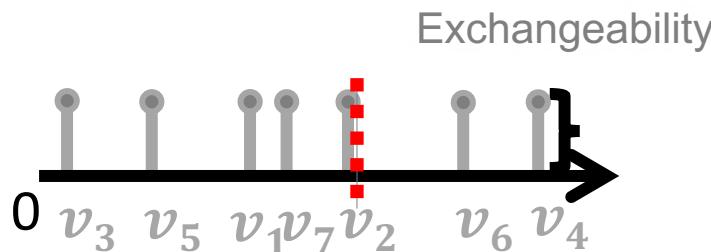
Revisiting Tibshirani et al. (2019)'s Proof

- Collect Bag (e.g., Set) of Data/Scores:
Condition on event $\{Z_1, \dots, Z_{n+1}\} = \{z_1, \dots, z_{n+1}\}$
Note: We know Z_i takes a value in $\{z_1, \dots, z_{n+1}\}$ but *not which* one (same for scores).



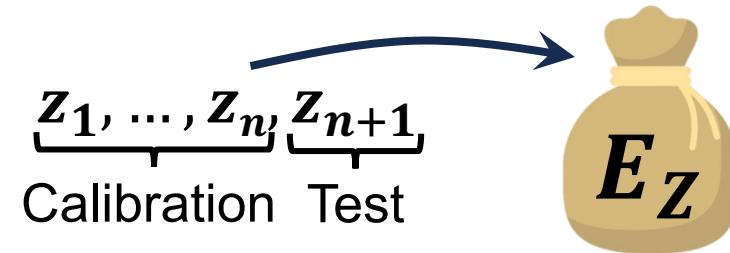
Revisiting Tibshirani et al. (2019)'s Proof

- Collect Bag (e.g., Set) of Data/Scores:
Condition on event $\{Z_1, \dots, Z_{n+1}\} = \{z_1, \dots, z_{n+1}\}$
Note: We know Z_i takes a value in $\{z_1, \dots, z_{n+1}\}$ but *not which one* (same for scores).
- Score Datapoints:
Compute “nonconformity” scores.
E.g., Residual scores: $\hat{S}(x, y) = |y - \hat{\mu}(x)|$

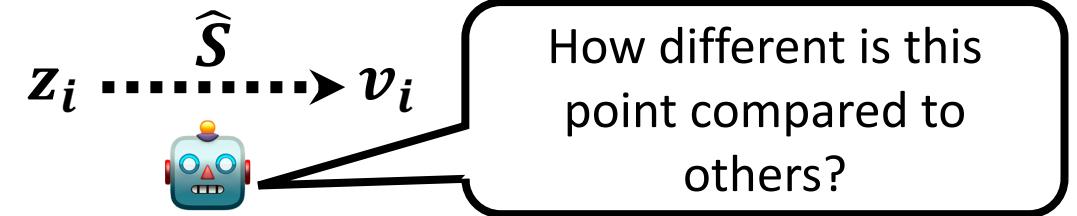


Revisiting Tibshirani et al. (2019)'s Proof

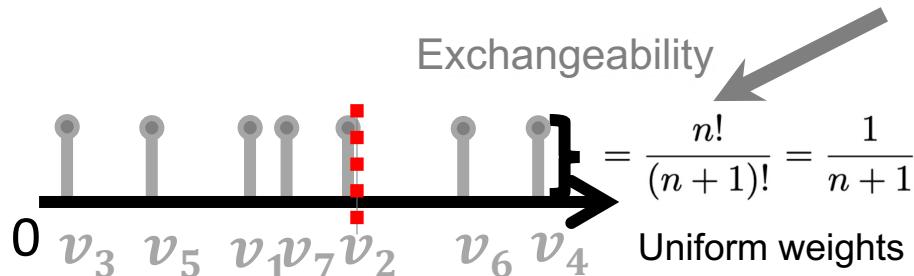
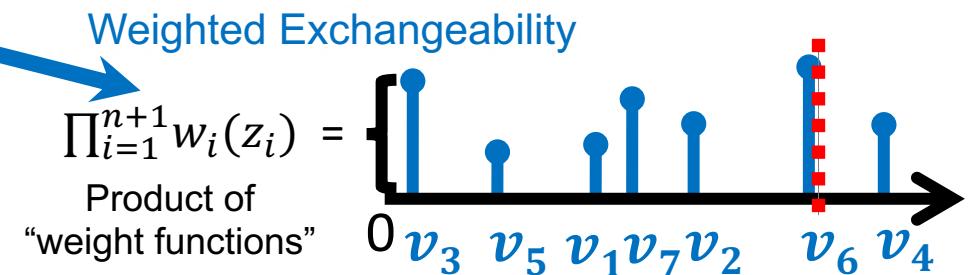
- Collect Bag (e.g., Set) of Data/Scores:
Condition on event $\{Z_1, \dots, Z_{n+1}\} = \{z_1, \dots, z_{n+1}\}$
Note: We know Z_i takes a value in $\{z_1, \dots, z_{n+1}\}$ but *not which one* (same for scores).



- Score Datapoints:
Compute “nonconformity” scores.
E.g., Residual scores: $\hat{S}(x, y) = |y - \hat{\mu}(x)|$
- Compute CP Weights: Examine Probability $V_{n+1} = v_i$ & Simplify with (Weighted) Exchangeability:



$$\mathbb{P}\{V_{n+1} = v_i \mid EZ\} * \frac{\sum_{\sigma: \sigma(n+1)=i} f(z_{\sigma(1)}, \dots, z_{\sigma(n+1)})}{\sum_{\sigma} f(z_{\sigma(1)}, \dots, z_{\sigma(n+1)})} \quad (1)$$



Key Insight: Exchangeability Conditions are *Practical*, not Theoretically Necessary

For Intuition: We can derive Eq. (1) without any assumptions on the joint PDF f :

$$\mathbb{P}\{V_{n+1} = v_i \mid \mathbf{E}_Z\} = ?$$

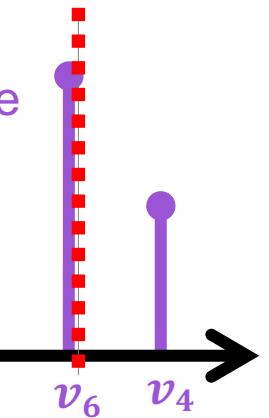
*

$$= \frac{\sum_{\sigma: \sigma(n+1)=i} f(z_{\sigma(1)}, \dots, z_{\sigma(n+1)})}{\sum_{\sigma} f(z_{\sigma(1)}, \dots, z_{\sigma(n+1)})}$$

?

?

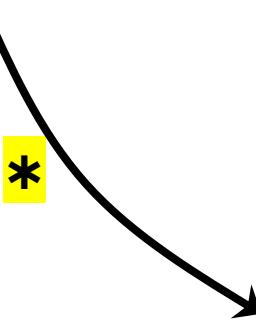
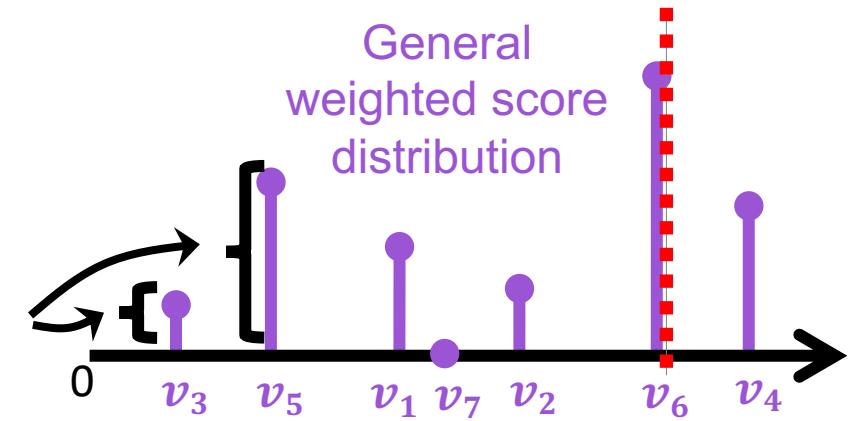
General
weighted score
distribution



Key Insight: Exchangeability Conditions are *Practical*, not Theoretically Necessary

For Intuition: We can derive Eq. (1) without any assumptions on the joint PDF f :

$$\mathbb{P}\{V_{n+1} = v_i \mid \mathcal{E}_Z\} = \mathbb{P}\{Z_{n+1} = z_i \mid \mathcal{E}_Z\}$$



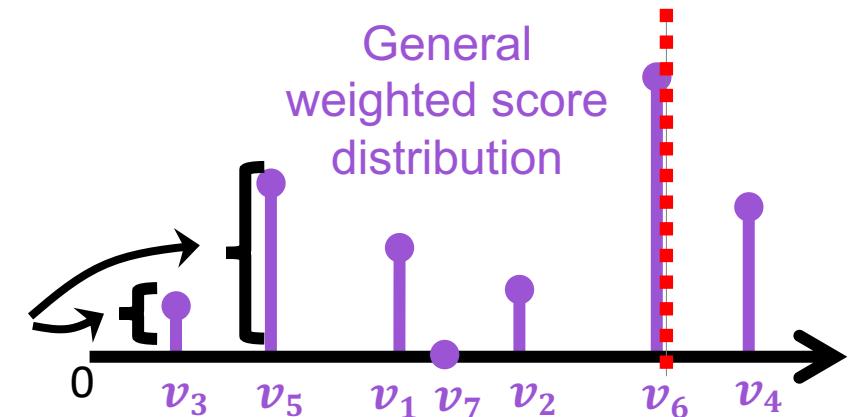
Key Insight: Exchangeability Conditions are *Practical*, not Theoretically Necessary

For Intuition: We can derive Eq. (1) without any assumptions on the joint PDF f :

$$\begin{aligned}\mathbb{P}\{V_{n+1} = v_i \mid \mathcal{E}_Z\} &= \mathbb{P}\{Z_{n+1} = z_i \mid \mathcal{E}_Z\} \\ &= \frac{p\{Z_{n+1} = z_i, \mathcal{E}_Z\}}{p\{\mathcal{E}_Z\}}\end{aligned}$$

*

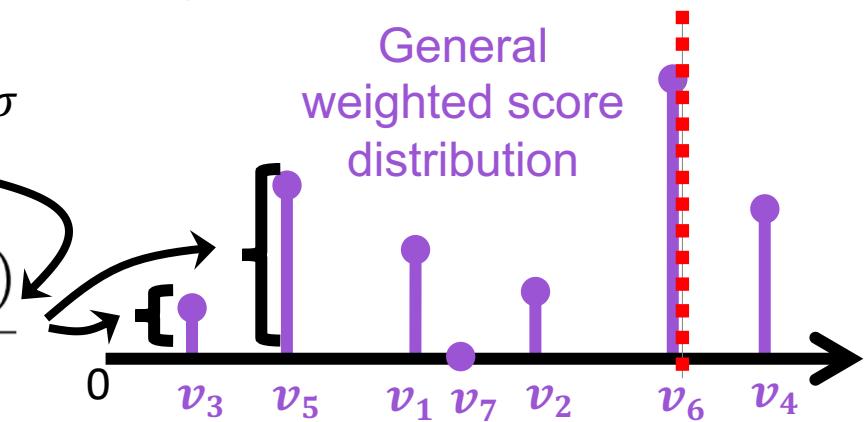
Conditional probability def.



Key Insight: Exchangeability Conditions are Practical, not Theoretically Necessary

For Intuition: We can derive Eq. (1) without any assumptions on the joint PDF f :

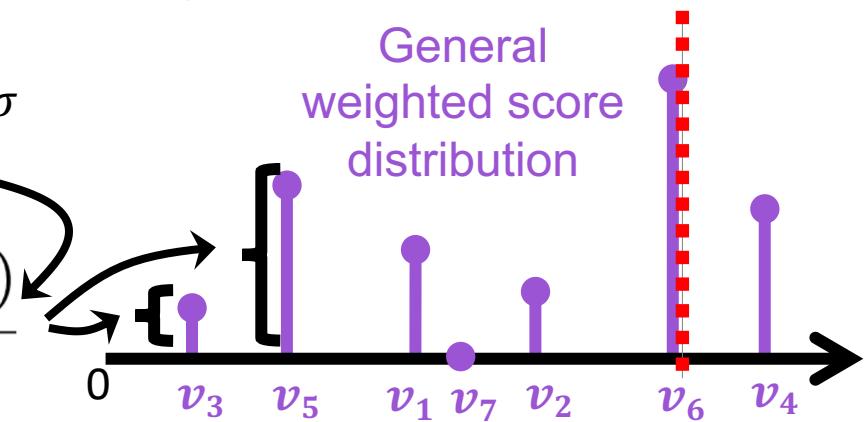
$$\begin{aligned}\mathbb{P}\{V_{n+1} = v_i \mid \mathcal{E}_Z\} &= \mathbb{P}\{Z_{n+1} = z_i \mid \mathcal{E}_Z\} \\ &= \frac{p\{Z_{n+1} = z_i, \mathcal{E}_Z\}}{p\{\mathcal{E}_Z\}} \quad \text{Conditional probability def.} \\ &= \frac{\sum_{\sigma: \sigma(n+1)=i} f(z_{\sigma(1)}, \dots, z_{\sigma(n+1)})}{\sum_{\sigma} f(z_{\sigma(1)}, \dots, z_{\sigma(n+1)})} \quad \text{LOTP over } \sigma\end{aligned}$$



Key Insight: Exchangeability Conditions are *Practical*, not Theoretically Necessary

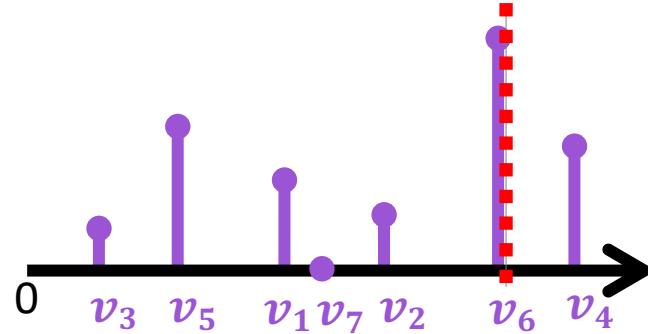
For Intuition: We can derive Eq. (1) without any assumptions on the joint PDF f :

$$\begin{aligned}\mathbb{P}\{V_{n+1} = v_i \mid \mathcal{E}_Z\} &= \mathbb{P}\{Z_{n+1} = z_i \mid \mathcal{E}_Z\} \\ &= \frac{p\{Z_{n+1} = z_i, \mathcal{E}_Z\}}{p\{\mathcal{E}_Z\}} \quad \text{Conditional probability def.} \\ &= \frac{\sum_{\sigma: \sigma(n+1)=i} f(z_{\sigma(1)}, \dots, z_{\sigma(n+1)})}{\sum_{\sigma} f(z_{\sigma(1)}, \dots, z_{\sigma(n+1)})} \quad \text{LOTP over } \sigma\end{aligned}$$



The *only role* of exchangeability assumptions is to simplify these **general weights** into a tractable form!

Main Theorem: Conformal Validity Guarantees Exist for Any Data Distribution



General Conformal Prediction Set:

$$\widehat{\mathcal{C}}_n(x) = \left\{ y \in \mathbb{R} : V_{n+1}^{(x,y)} \leq Q_{1-\alpha} \left(\underbrace{\sum_{i=1}^n \mathbb{P}_{n+1}\{Z_i|E_z\} \delta_{V_i^{(x,y)}}}_{\text{general weights for calibration data}} + \underbrace{\mathbb{P}_{n+1}\{Z_{n+1}|E_z\} \delta_\infty}_{\text{general weight for test point}} \right) \right\}$$

Satisfies:

$$\mathbb{P}\{Y_{n+1} \in \widehat{\mathcal{C}}_n(X_{n+1})\} \geq 1 - \alpha.$$

“How to Find” CP Validity Guarantees

1. List assumptions on f (if any). E.g., for MFCS, X changes depending on past but $Y | X$ does not.

“How to Find” CP Validity Guarantees

1. List assumptions on f (if any). E.g., for MFCS, \mathbf{X} changes depending on past but $\mathbf{Y} \mid \mathbf{X}$ does not.
2. Factorize f : Factorize f into “dynamic” and “invariant” factors (w.r.t. permutations), using standard probability rules and Step 1 assumptions. E.g., for MFCS:

$$f(z_1, \dots, z_{n+t}) = \prod_{j=1}^{n+t} \left[\underbrace{p(x_j \mid z_1, \dots, z_{j-1})}_{\text{Time-dependent factors}} \right] \cdot \underbrace{\prod_{j=1}^{n+t} \left[p(y_j \mid x_j) \right]}_{\text{Time-invariant factor}}$$

“How to Find” CP Validity Guarantees

1. List assumptions on f (if any). E.g., for MFCS, \mathbf{X} changes depending on past but $\mathbf{Y} \mid \mathbf{X}$ does not.
2. Factorize f : Factorize f into “dynamic” and “invariant” factors (w.r.t. permutations), using standard probability rules and Step 1 assumptions. E.g., for MFCS:

$$f(z_1, \dots, z_{n+t}) = \prod_{j=1}^{n+t} \underbrace{\left[p(x_j \mid z_1, \dots, z_{j-1}) \right]}_{\text{Time-dependent factors}} \cdot \underbrace{\prod_{j=1}^{n+t} \left[p(y_j \mid x_j) \right]}_{\text{Time-invariant factor}}$$

3. Compute or estimate weights: Plug factorized f from Step 2 into Eq. (1). E.g., for MFCS:

$$\mathbb{P}\{Z_{n+t} = z_i \mid \mathbf{E}_{\mathbf{Z}}^{(t)}\} = \frac{\sum_{\sigma: \sigma(n+t)=i} f(z_{\sigma(1)}, \dots, z_{\sigma(n+t)})}{\sum_{\sigma} f(z_{\sigma(1)}, \dots, z_{\sigma(n+t)})} = \frac{\sum_{\sigma: \sigma(n+t)=i} \prod_{j=1}^{n+t} p(x_{\sigma(j)} \mid z_{\sigma(1)}, \dots, z_{\sigma(j-1)})}{\sum_{\sigma} \prod_{j=1}^{n+t} p(x_{\sigma(j)} \mid z_{\sigma(1)}, \dots, z_{\sigma(j-1)})}$$

“How to Find” CP Validity Guarantees

1. List assumptions on f (if any). E.g., for MFCS, \mathbf{X} changes depending on past but $\mathbf{Y} \mid \mathbf{X}$ does not.
2. Factorize f : Factorize f into “dynamic” and “invariant” factors (w.r.t. permutations), using standard probability rules and Step 1 assumptions. E.g., for MFCS:

$$f(z_1, \dots, z_{n+t}) = \prod_{j=1}^{n+t} \underbrace{\left[p(x_j \mid z_1, \dots, z_{j-1}) \right]}_{\text{Time-dependent factors}} \cdot \underbrace{\prod_{j=1}^{n+t} \left[p(y_j \mid x_j) \right]}_{\text{Time-invariant factor}}$$

3. Compute or estimate weights: Plug factorized f from Step 2 into Eq. (1). E.g., for MFCS:

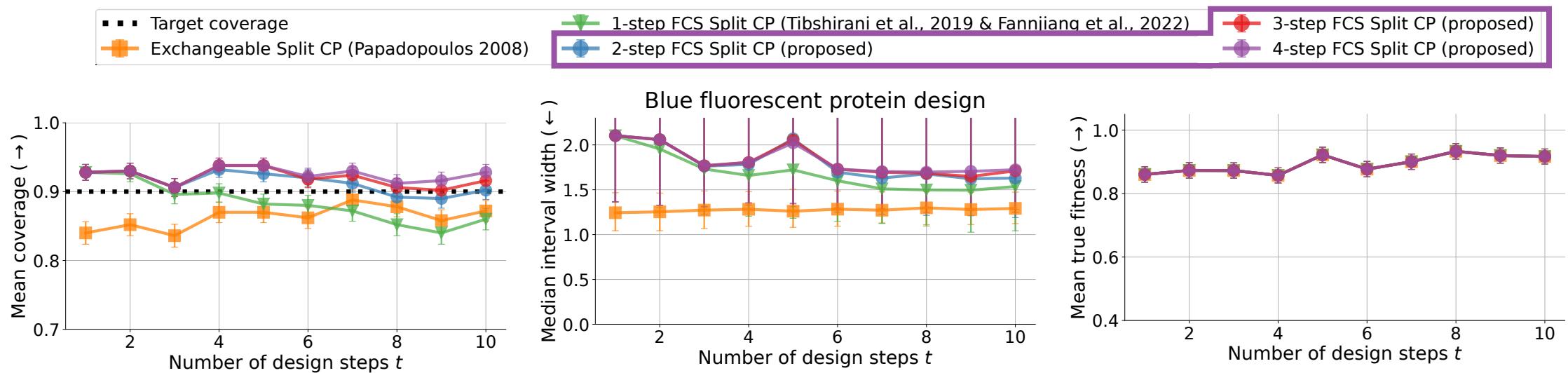
$$\begin{aligned} \mathbb{P}\{Z_{n+t} = z_i \mid \mathbf{E}_{\mathbf{Z}}^{(t)}\} &= \frac{\sum_{\sigma: \sigma(n+t)=i} f(z_{\sigma(1)}, \dots, z_{\sigma(n+t)})}{\sum_{\sigma} f(z_{\sigma(1)}, \dots, z_{\sigma(n+t)})} = \frac{\sum_{\sigma: \sigma(n+t)=i} \prod_{j=1}^{n+t} p(x_{\sigma(j)} \mid z_{\sigma(1)}, \dots, z_{\sigma(j-1)})}{\sum_{\sigma} \prod_{j=1}^{n+t} p(x_{\sigma(j)} \mid z_{\sigma(1)}, \dots, z_{\sigma(j-1)})} \\ &\approx \frac{\sum_{\sigma: \sigma(n+t)=i} \prod_{j=n+t+1-d}^{n+t} p(x_{\sigma(j)} \mid z_{\sigma(1)}, \dots, z_{\sigma(j-1)})}{\sum_{\sigma} \prod_{j=n+t+1-d}^{n+t} p(x_{\sigma(j)} \mid z_{\sigma(1)}, \dots, z_{\sigma(j-1)})} \end{aligned}$$

Roadmap

- **Introduction**
- **Key Background**
- **Theory and Method Contributions**
- **Experiments:**
 - Black-Box Optimization (Multi-Round Synthetic Protein Design)
 - Adaptive AI Exploration with Sharp Intervals
- **Discussion**

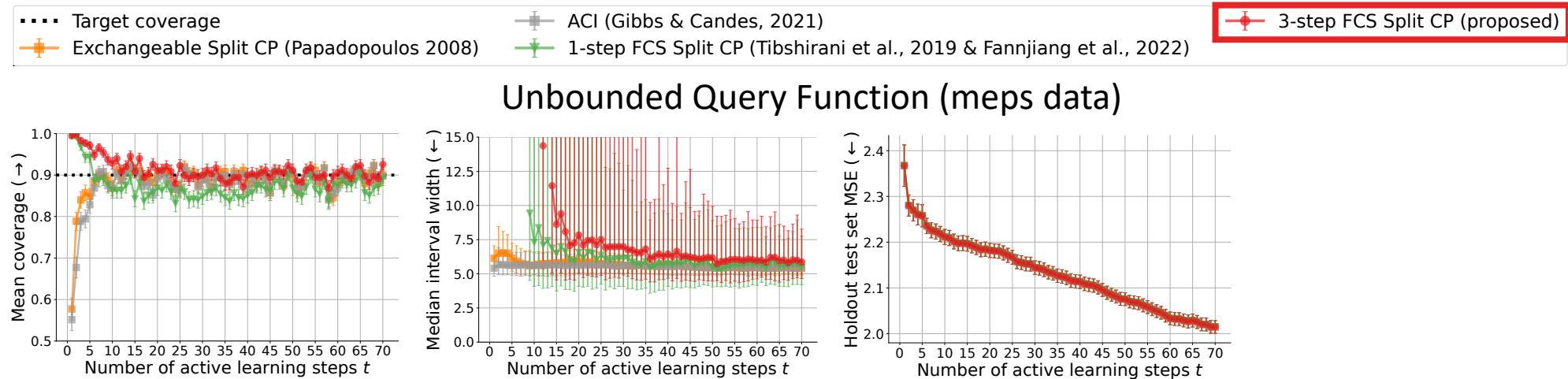
Multi-Round Protein Design Experiments

We induce MFCS by an ML agent actively selecting each point with query functions
 $p(x | Z_{\text{train}}^{(t)}) \propto \exp(\lambda \cdot u_t(x))$, for utility function u_t .

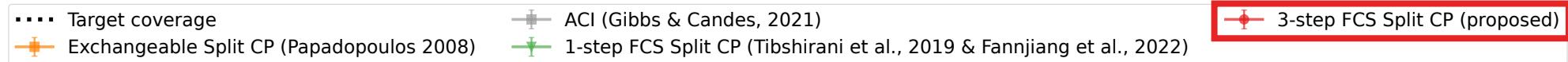
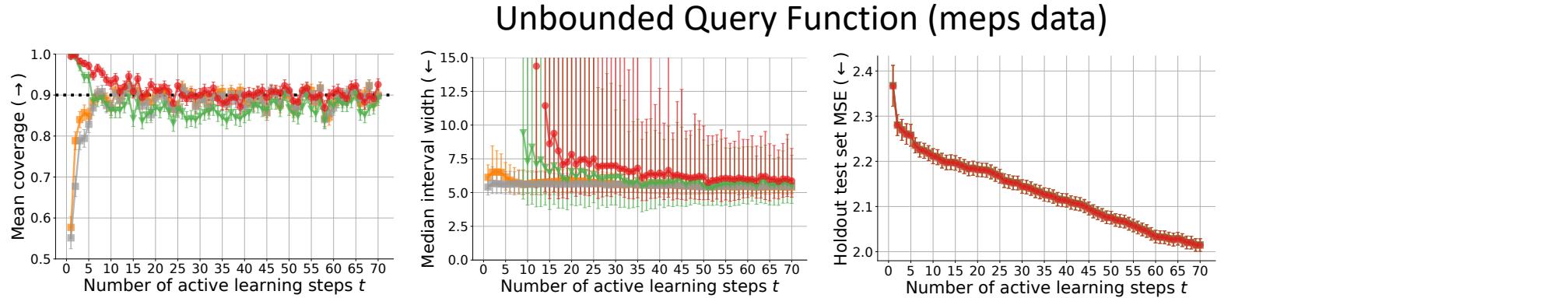
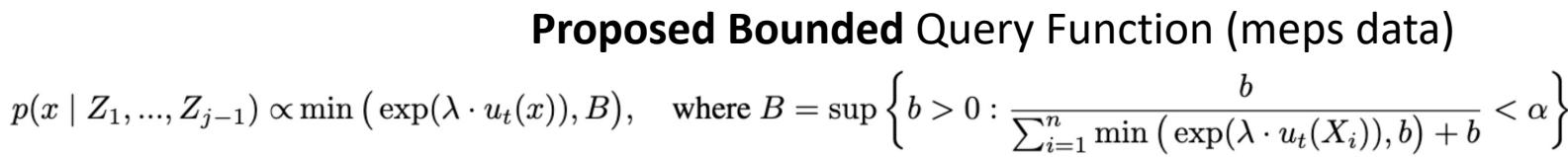
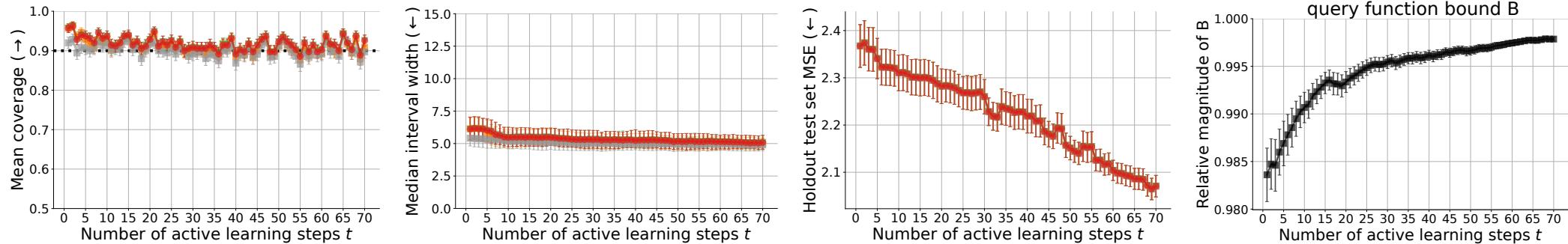


Our proposed Split CP MFCS methods allow for **complex models like neural networks** and **maintain coverage** even at later design steps t .

Active Learning Experiments



Adaptive Exploration with Sharp Intervals

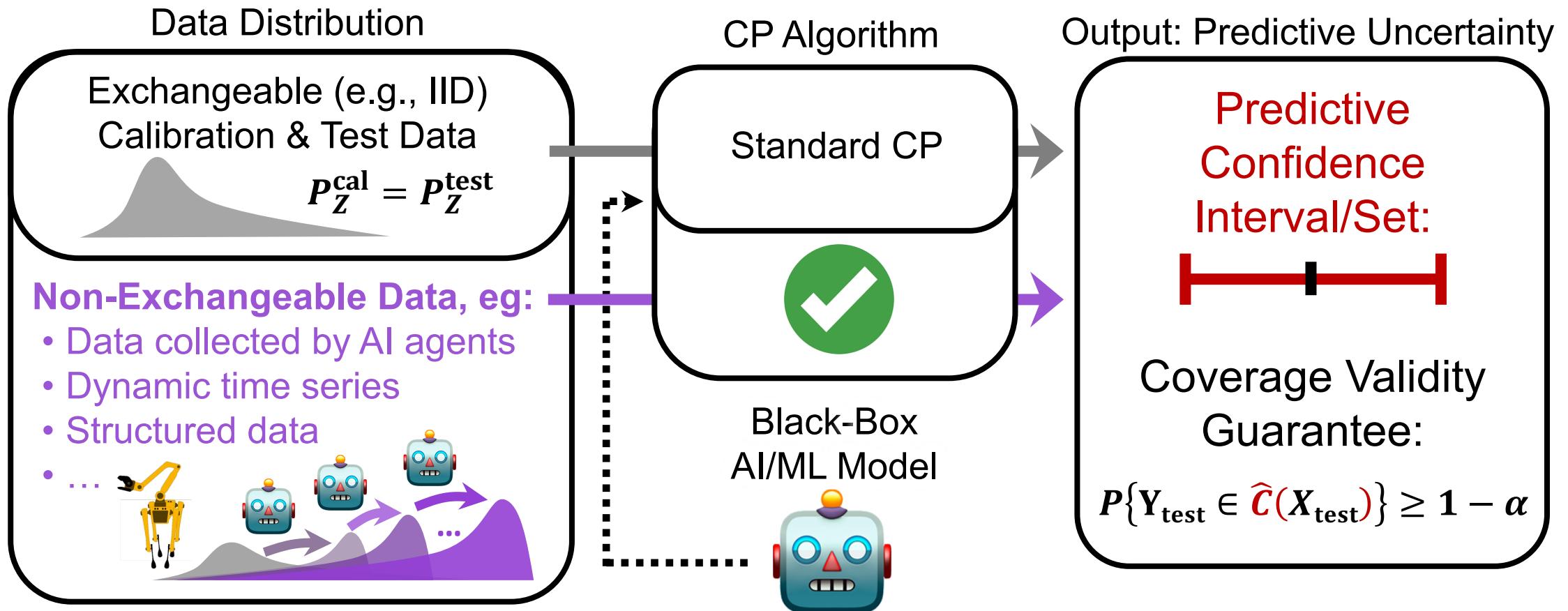


The **bounded AI/ML agent initially “explores slowly,”** until it has seen enough data!

Roadmap

- **Introduction**
- **Key Background**
- **Theory and Method Contributions**
- **Experiments:**
- **Discussion**

Recap and Future Directions



Recap and Future Directions

Data Distribution

CP Algorithm

Output: Predictive Uncertainty

Many Promising Future Directions! E.g.,

- Further addressing practical bottlenecks
- Safe decision making
- Other loss functions
- Conditional calibration
- ...

$$P\{Y_{\text{test}} \in U(X_{\text{test}})\} \geq 1 - \alpha$$

References

Fannjiang, C., Bates, S., Angelopoulos, A. N., Listgarten, J., & Jordan, M. I. (2022). Conformal prediction under feedback covariate shift for biomolecular design. *PNAS*.

Nair, Y., & Janson, L. (2023). Randomization tests for adaptively collected data. *arXiv*.

Papadopoulos, H., Proedrou, K., Vovk, V., & Gammerman, A. (2002). Inductive confidence machines for regression. *ECML*.

Poelwijk, et al. (2019). Learning the pattern of epistasis linking genotype and phenotype in a protein. *Nature communications*.

Prinster, D., Liu, A., & Saria, S. (2022). JAWS: Auditing predictive uncertainty under covariate shift. *NeurIPS*.

Prinster, D., Saria, S., & Liu, A. (2023). JAWS-x: Addressing efficiency bottlenecks of conformal prediction under standard and feedback covariate shift. *ICML*.

Stanton, S., Maddox, W., & Wilson, A. G. (2023, April). Bayesian optimization with conformal prediction sets. *A/Stats*.

Tibshirani, R. J., Foygel Barber, R., Candes, E., & Ramdas, A. (2019). Conformal prediction under covariate shift. *NeurIPS*, 32

Vovk, V., Gammerman, A., & Shafer, G. (2005). *Algorithmic learning in a random world*. Springer Science & Business Media.

Thank you!

Paper QR

GORDON AND BETTY
MOORE
FOUNDATION