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Introduction: Al Uncertainty Quantification
via Conformal Prediction (CP)

« Theory: We prove that conformal prediction (with coverage validity
guarantees) can theoretically extend to any, potentially non-exchangeable
joint data distribution. This builds on analysis from Tibshirani et al. (2019).

* Practical:

1. We outline “how to find” valid CP guarantees for any data distribution.
2. We derive practical CP algorithms for Al agent feedback-loop shifts.
3. Our extensions enable adaptive Al exploration with sharp intervals.




Roadmap

« Key Background: Weighted Conformal Prediction for Covariate Shifts



Background: Weighted CP for Covariate Shifts

Vovk et al.
(2005)

-

Exchangeable Data
= No Shift

P;al — PtZest

E.g., IID

P, invariant.
\___~ y,




Background: Weighted CP for Covariate Shifts

Vovk et al. Tibshirani et al.
(2005) (2019)
Exchangeable Data Weighted \
=~ No Shift Exchangeable Data
= Independent Shifts
Pcal — Ptest 1
Z Z P(O) ‘ Pg( )
E.g., IID E.g., Standard
Covariate Shift (SCS)
P, invariant. Pyx invariant. )




Background: Weighted CP for Covariate Shifts

Vovk et al. Tibshirani et al. Fannjiang et al.
(2005) (2019) (2022)
Exchangeable Data Weighted \ Pseudo-ExchangeabD
= No Shift Exchangeable Data Data = Limited
= Independent Shifts Dependent Shifts
PF' = P (0) (1) PO~ J i
Py JPX |

E.g., IID

P, invariant.

E.g., Standard
Covariate Shift (SCS)

Py x invariant. /

E.g., Feedback
Covariate Shift (FCS)

Py x invariant.

J
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* Main Result: Conformal Validity Guarantees Exist for Any Data Distribution
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Collect Bag (e.g., Set) of Data/Scores: — >
Condition on event {Zy, ..., Zy41} = {21, ..., Zp11} Z1, 2y, Zniq
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Key Insight: Exchangeability Conditions are
Practical, not Theoretically Necessary

For Intuition: We can derive Eq. (1) without any assumptions on the joint PDF f:
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Key Insight: Exchangeability Conditions are
Practical, not Theoretically Necessary

For Intuition: We can derive Eq. (1) without any assumptions on the joint PDF f:
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The only role of exchangeability assumptions is to
simplify these general weights into a tractable form!



Main Theorem: Conformal Validity
Guarantees Exist for Any Data Distribution

0 v3 v5 Vv, V2 Vg Vi
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1. List assumptions on f (if any). E.g., for MFCS, X changes depending on past but Y | X does not.

2. Factorize f. Factorize finto “dynamic” and “invariant” factors (w.r.t. permutations), using standard
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 Experiments:

» Black-Box Optimization (Multi-Round Synthetic Protein Design)
» Adaptive Al Exploration with Sharp Intervals



Multi-Round Protein Design Experiments

We induce MFCS by an ML agent actively selecting each point with query functions
p(z | ZEi) o< exp(X - ue(x)), for utility function u;.

*» Target coverage 4~ _1-step FCS Split CP (Tibshirani et al., 2019 & Fannjiang et al., 2022) I =@— 3-step FCS Split CP (proposed)
Exchangeable Split CP (Papadopoulos 2008) @— 2-step FCS Split CP (proposed) @~ 4-step FCS Split CP (proposed)
—~ Blue fluorescent protein design
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Our proposed Split CP MFCS methods allow for complex models like neural
networks and maintain coverage even at later design steps t.



Active Learning Experiments

===+ Target coverage #+— ACI (Gibbs & Candes, 2021) I —— 3-step FCS Split CP (proposed) I
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Adaptive Exploration with Sharp Intervals

===+ Target coverage ACI (Gibbs & Candes, 2021) I —— 3-step FCS Split CP (proposed) I
Exchangeable Split CP (Papadopoulos 2008) ¥— 1-step FCS Split CP (Tibshirani et al., 2019 & Fannjiang et al., 2022)
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Proposed Bounded Query Function (meps data)
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The bounded AI/ML agent initially “explores slowly,” until it has seen enough data!
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Recap and Future Directions
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Recap and Future Directions

Many Promising Future Directions! E.g.,
* Further addressing practical bottlenecks
Safe decision making

Other loss functions
Conditional calibration
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