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Trajectory Prediction

1 Introduction
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Trajectory Distribution Evaluation

1 Introduction

It measures the distance between the Predicted and ground truth distributions.

distance(Fy;, Fy;)

Where

Fx; is the CDF of the predicted.

Fy; is the CDF of the ground truth.

iis the index of N instances in the dataset.
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Variety Loss

1 Introduction

Lvariety(XiaYi) - EI,(ILIII(I ||Xi,k - YiH2

Illustration adapted from Thiede, Luca Anthony, and Pratik Prabhanjan Brahma. ”Analyzing the variety loss in the context of probabilistic trajectory prediction.”
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
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Common Metrics for Single Trajectory Prediction

1 Introduction

Average Displacement Error

ADE(x;,yi) = lex —¥il2

Legend

— Ground truth
— Trajectory Prediction

Illustration inspired by Boris, Ivanovic, and M. Pavone. "Rethinking trajectory forecasting evaluation.” arXiv preprint arXiv:2107.10297 (2021).
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ADE/FDE on Multimodal Trajectory Prediction (MTP)

1 Introduction
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ADE/FDE on Multimodal Trajectory Prediction (MTP)

1 Introduction
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Common instances of Minimum of N (MoN)

1 Introduction

Minimum Average Displacement Error
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Common instances of Minimum of N (MoN)

1 Introduction

Minimum Final Displacement Error
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"L-lowest of N” (LoN)

1 Introduction
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Evaluation with MoN

1 Introduction

e Variety loss aka "Minimum of N” (MoN)
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Implications of using Variety Loss or MoN

1 Introduction

Loss function: less sharp (high-variance density) or too sharp (low-variance density)
depending on the value of K and dimensionality of the target distribution

Evaluation: probabilistic calibration not respected

Application: Cost induced on the prevalent or extreme events
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Proper Scoring Rule

2 Methodology

A (negatively-oriented) strictly proper scoring rule S maps a probability distribution Fx

and an observation y to a real number, i.e., S(Fx,y) € R. The expected value of §(Fx, .)
under Fy, is written as 8(Fx, Fy) = Eyg, [S(Fx,y)].
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MoN as a Scoring Rule

2 Methodology

Proposition 4.1

Average Displacement Error ADE(X;, Y;) is improper, meaning there exist distributions Fy,
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MoN as a Scoring Rule

2 Methodology

Proposition 4.4

Let X; ~ Fx, of length K and Y; ~ Fy,. If K — oo, L is fixed and supp(Fy,) C supp(Fx,)
then ADE(L) (Xi, Yi) — 0.

For the Proof, refer to the paper.

23/40



Energy Score

2 Methodology

e Energy Distance’

1 Székely, G.J., Rizzo, M.L.: Energy statistics: A class of statistics based on distances. Journal of Statistical Planning and Inference. 143, 1249—1272 (2013).

24/40



Energy Score

2 Methodology

e Energy Distance’
e Other related measures

1 Székely, G.J., Rizzo, M.L.: Energy statistics: A class of statistics based on distances. Journal of Statistical Planning and Inference. 143, 1249—1272 (2013).

24/40



Energy Score

2 Methodology

e Energy Distance’
e Other related measures
— Generalization of CRPS 2

1 Székely, G.J., Rizzo, M.L.: Energy statistics: A class of statistics based on distances. Journal of Statistical Planning and Inference. 143, 1249—1272 (2013).

2 Gneiting, T., Raftery, A.E.: Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association. 102, 359—378 (2007).

24/40



Energy Score

2 Methodology

e Energy Distance’
e Other related measures

— Generalization of CRPS 2
— Permutational Analysis of Variance (PERMANOVA) 3

1 Székely, G.J., Rizzo, M.L.: Energy statistics: A class of statistics based on distances. Journal of Statistical Planning and Inference. 143, 1249—1272 (2013).
2 Gneiting, T., Raftery, A.E.: Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association. 102, 359—378 (2007).

3 Anderson, M. (2001). A new method for non-parametric multivariate analysis of variance. Australecology, 26(1), 32-46.

24/40



Energy Score

2 Methodology

e Energy Distance’
e Other related measures
— Generalization of CRPS 2

— Permutational Analysis of Variance (PERMANOVA) 3
— Sinkhorn distance and Maximum Mean Discrepancy #

1 Székely, G.J., Rizzo, M.L.: Energy statistics: A class of statistics based on distances. Journal of Statistical Planning and Inference. 143, 1249—1272 (2013).
2 Gneiting, T., Raftery, A.E.: Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association. 102, 359—378 (2007).

3 Anderson, M. (2001). A new method for non-parametric multivariate analysis of variance. Australecology, 26(1), 32-46.

4 Ramdas A, Trillos NG, Cuturi M. On Wasserstein Two-Sample Testing and Related Families of Nonparametric Tests. Entropy. 2017; 19(2):47.

24/40



Energy Score

2 Methodology

ED EI
p_1 %118
ES(Fxi, yi) =E[Xi — yill, —5 EllX: — Xillp (1)
1 N
ES = ;ES(in,yi) (2)
i=
1 K 1 K K
ES = KZ %ige = villz = 55 DD Itk —xil2 where f=1, p=2
k=1 k=1k'=1

25/40



Energy Score Intuition

2 Methodology

K

1S 1 &
ES =4 > lxik = vill2 - e DD Mg = xigll2
k=1 k=1k'=1

Legend

O Observation y @ Q
@ Prediction = '

26/40



Energy Score Intuition

2 Methodology

3 3 3
1
=> > xix —vill2 — 1%k — Xi g |2
3
k=1 k: r—1

Legend
O Observation y @ Q
. Prediction = .

26/40



Energy Score Intuition

2 Methodology

1 3
=3 D lxige —villa =
k=1

1=1

3 3
Z Z |Xi,k - Xi,k/||2
k=1 k/'=1

Legend

O Observation y
@ Prediction =

26/40



Energy Score Intuition

2 Methodology

1 3
=3 D lxige —villa =
k=1

1=2

3 3
Z Z |Xi,k - Xi,k/||2
k=1 k/'=1

Legend
O Observation y

@ Prediction = ®

26/40



Energy Score Intuition

2 Methodology

1 3
=3 D lxige —villa =
k=1

1=3

3 3
Z Z |Xi,k - Xi,k/||2
k=1 k/'=1

Legend

O Observation y .

@ Prediction =

26/40



Energy Score Intuition

2 Methodology

anlk vills — - 32ZZ||xlk Xl

k=1k'=1

i={1,2,3}

Legend

O Observation y
. Prediction x

26/40



Energy Score Intuition

2 Methodology

3 3

ESI%Z%ZHXi,k_YiHZ— 22 3222|yx,k Xixe |2
i=1 = k=1

Legend

O Observation y
. Prediction x

26/40

k=1k'=1

i=1{1,2,3}




Energy Score Intuition

2 Methodology

1 3.3 113,03
S:?ZZHX;k—Mb - 22;::2:: 1%k — Xi k|2

i=1 k=1

i=1{1,2,3}

Legend

O Observation y
. Prediction x

26/40



Energy Score Intuition

2 Methodology

1 < 1 -
ED(Fx, Fy) = E(|X — Y];) — *E(HX—XHg) — SE(IY - Yli;)

ik—Vi, 2322232\&1{ X |l2— 2322232H)’1k Vik |2
i—1 k=1

k=1k'=1 k=1k'=1

Legend

O Observation y
. Prediction x

Székely, G.J., Rizzo, M.L.: Energy statistics: A class of statistics based on distances. Journal of Statistical Planning and Inference. 143, 12491272 (2013)
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Energy Score for MTP Evaluation

2 Methodology

b xS AR 2 r» Spatial
Xik = T : yi = - :
: o ' o Temporal
11 XIS yTL yTs
dim({x;x }X_;)=K xT xS dim(y;))=1xT xS§

e Entry-wise (jointly on spatial and temporal)
e Column-wise (marginalized on Spatial)

e Row-wise (marginalized on Temporal)
remark: common metrics such as minADE are typically temporally marginalized
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e A strictly proper metric gets minimized at the optimal parameter (deviation = 0).
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ETH/UCY Dataset

3 Experiments and Results

e Pretrained models from Bae et. al ®> on ETH/UCY human trajectory datasets.

5 Bae, I., Park, J. H., & Jeon, H. G. (2022). Non-probability sampling network for stochastic human trajectory prediction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (pp. 6477-6487).
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Non-Probability Sampling Network (NPSN)

e Combination of the three models and sampling methods were considered.

e Goal: how Energy Score ranks differently than its MoN counterpart?
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ETH/UCY Dataset

3 Experiments and Results

Reported values: expected minADE/ES. AVG is the arithmetic average over all datasets.
Bold: best model, underline: second best model. Baselines: *-MC.

ETH HOTEL UNIV ZARA1 ZARA2 AVG

stgcnn-mc 0.65/1.44 0.50/1.05 0.44/0.96 0.34/077 0.30/0.67 0.45/0.98
pecnet-mc 0.61/1.64 0.22/070 0.33/0.89 0.25/074 0.19/0.65 0.32/0.92
sgcn-mc 0.57/1.34 0.31/0.73 0.37/0.85 0.29/0.68 0.22/0.53 0.35/0.82
stgcnn-gmc 0.61/1.30  0.34/0.98 0.36/0.89  0.32/074 0.29/0.65 0.38/0.91
pecnet-gmc  0.60/1.62 0.21/0.68 0.33/0.88 0.24/0.72 0.18/0.62  0.31/0.91
sgcn-gmce 0.49/1.23 0.21/0.66 0.31/0.78 0.25/0.63 0.19/0.49 0.29/0.76
stgcnn-npsn  0.44/1.48 0.21/0.88  0.28/0.88 0.25/0.83 0.22/073 0.28/0.96
pecnet-npsn  0.55/1.60 0.19/0.63 0.29/0.88 0.21/0.70 0.16/0.56  0.28/0.87
sgcn-npsn 0.36/1.23 0.16/0.62 0.23/079 0.18/0.66 0.14/0.50 0.21/0.76

36/40



ETH/UCY Dataset

3 Experiments and Results

Reported values: expected minADE/ES. AVG is the arithmetic average over all datasets.
Bold: best model, underline: second best model. Baselines: *-MC.

ETH HOTEL UNIV ZARA1 ZARA2 AVG

stgcnn-mc 0.65/1.44  0.50/1.05 0.44/0.96 0.34/077 0.30/0.67 0.45/0.98
pecnet-mc 0.61/1.64 0.22/070 0.33/0.89 0.25/074 0.19/0.65 0.32/0.92
sgcn-mc 0.57/1.34  0.31/073  0.37/0.85 0.29/0.68 0.22/0.53 0.35/0.82
stgcnn-gmc  0.61/1.30  0.34/0.98 0.36/0.89  0.32/074 0.29/0.65 0.38/0.91
pecnet-gmc  0.60/1.62  0.21/0.68 0.33/0.88 0.24/0.72 0.18/0.62  0.31/0.91
sgcn-gmce 0.49/1.23 0.21/0.66  0.31/0.78 0.25/0.63 0.19/0.49 0.29/0.76
stgcnn-npsn  0.44/1.48 0.21/0.88  0.28/0.88 0.25/0.83 0.22/073 0.28/0.96
pecnet-npsn  0.55/1.60 0.19/0.63 0.29/0.88 0.21/0.70  0.16/0.56  0.28/0.87
sgcn-npsn 0.36/1.23 0.16/0.62 0.23/079 0.18/0.66 0.14/0.50 0.21/0.76

ES favors SGCN-QMC as the best model over SGCN-NPSN on 3 out of 5 datasets, in
contrast to minADE.
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Summary

4 Conclusion

Adopted Scoring Rules framework for evaluation of trajectory distribution
predictions.

Examined minADE /minFDE as common instances of the Minimum of N family of
evaluation metrics and showed that they are improper.

Proposed Energy Score-based evaluation as an alternative.

Demonstrated how marginalized variations of Energy Score can be useful for
diagnosis of trajectory distribution predictions.
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4 Conclusion

e Energy Score calculation has (’)(KZ) computational complexity.
e Behavior of energy score for small values of K merits further investigation.
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Evaluation of Trajectory Distribution
Predictions with Energy Score

Thank you for listening!
Any questions?
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