

## 3 Ingredients to cook MOMENT



### The Time-series Pile

Public time-series datasets are small, task-specific and scattered



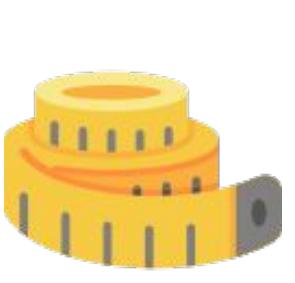
**The Time-series Pile:** Large repository of public time-series spanning diverse domains, frequencies & modeling tasks

**Collection of 4 task-specific public benchmarks** for long & short-horizon forecasting, anomaly detection, and classification



### Multi-dataset pre-training




Diverse time-series characteristics (lengths, amplitudes, frequencies) make multi-dataset pre-training hard



**Systematically solutions** to time-series challenges: Channel independence, fixed-length inputs, reversible instance normalization



### Evaluation



Holistic benchmarks to evaluate models on diverse datasets and tasks in limited supervision settings in early stages



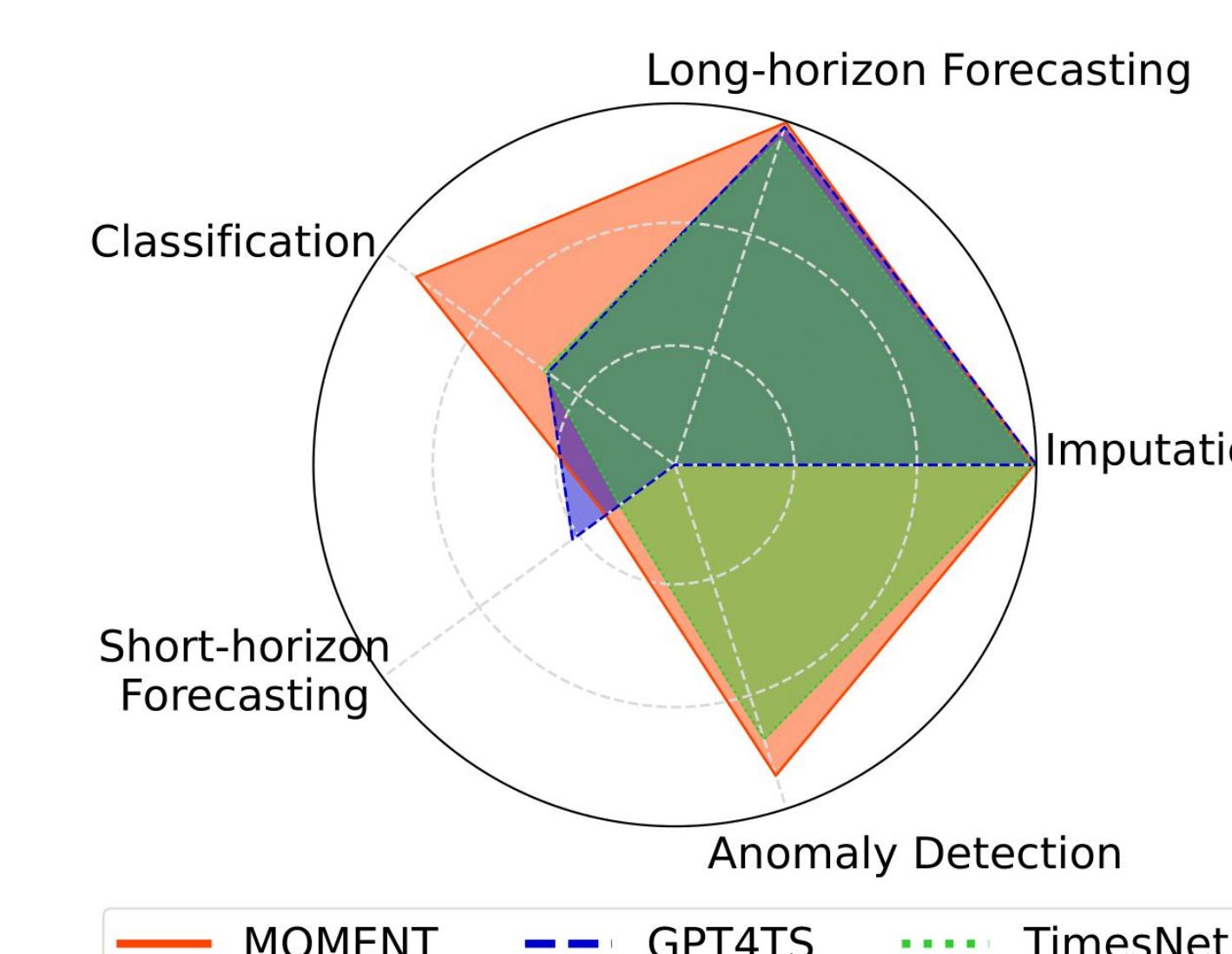
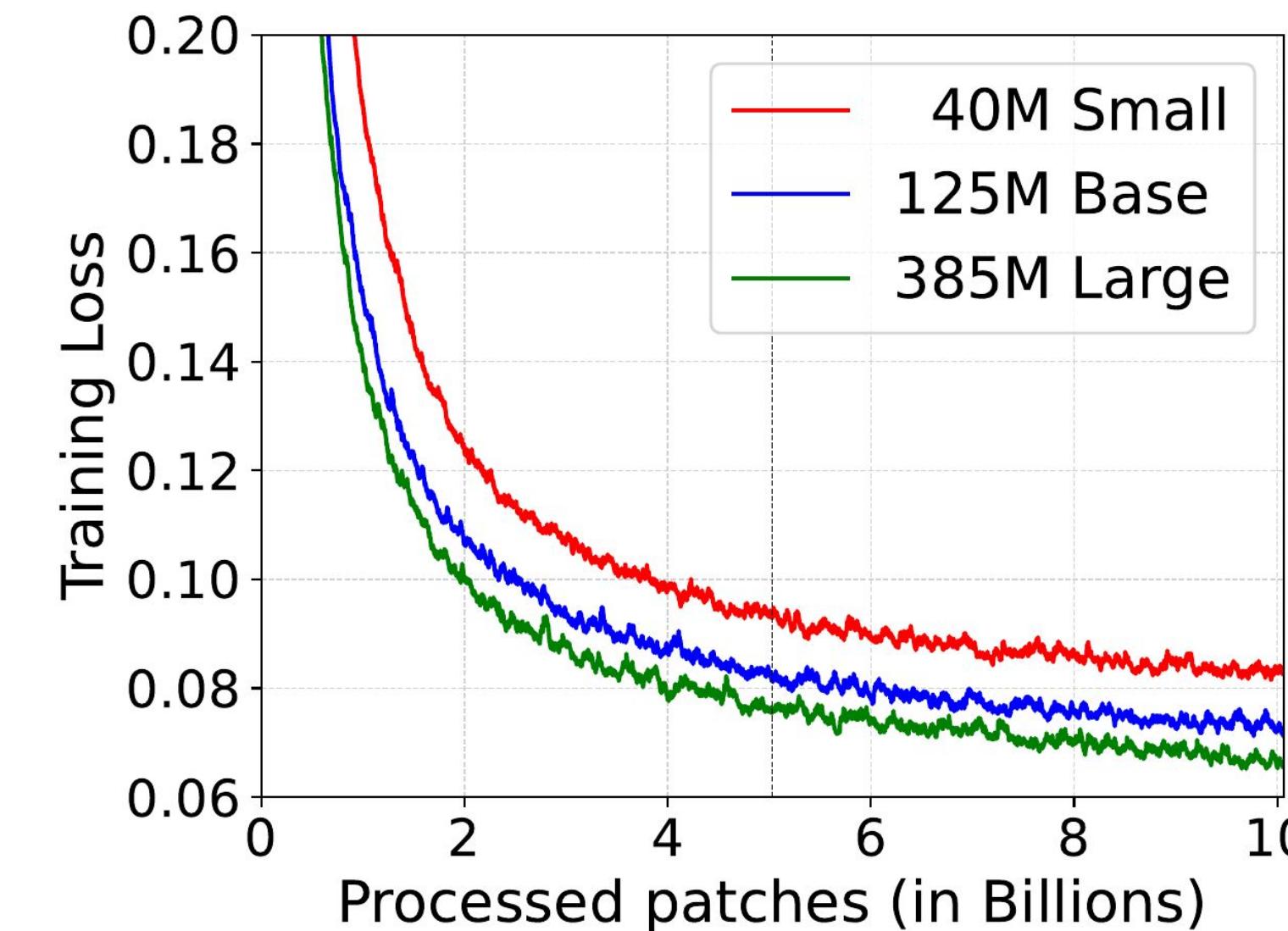
**Carefully designed benchmark** on 5 time-series modeling tasks: short- and long-horizon forecasting, anomaly detection, classification, and imputation

Focus on evaluating MOMENT against both SoTA deep learning and statistical baselines, on many task-specific datasets, using multiple evaluation metrics, exclusively in limited supervision settings (e.g., zero-shot imputation)

# MOMENT: A Family of Open Time-series Foundation Models

Mononito Goswami<sup>1</sup>, Konrad Szafer<sup>\*1</sup>, Arjun Choudhry<sup>\*1</sup>,  
Yifu Cai<sup>1</sup>, Shuo Li<sup>2</sup>, Artur Dubrawski<sup>1</sup>

<sup>1</sup>Auton Lab, Robotics Institute, Carnegie Mellon University



<sup>2</sup>University of Pennsylvania

### TL;DR


We introduce the Time-series Pile, a large repository of public time-series, use it to pre-train a family of large models. We test these models on a benchmark with diverse tasks and datasets in limited supervision settings.



*Modeling time-series data,  
now just a MOMENT away!*



Paper



Research code



Model Weights  
Time-series Pile

**Auton Lab**

**THE ROBOTICS INSTITUTE**

**Carnegie Mellon University**

## Findings



### MOMENT does well on multiple tasks

Long-horizon forecasting

| Methods | Metric                           | MOMENT <sub>0</sub><br>MSE<br>MAE | Time-LLM<br>MSE<br>MAE           | GPT4TS<br>MSE<br>MAE             | PatchTST<br>MSE<br>MAE           | DLInar<br>MSE<br>MAE             | TimesNet<br>MSE<br>MAE           | FEDFormer<br>MSE<br>MAE          | Stationary<br>MSE<br>MAE         | LightTTS<br>MSE<br>MAE           | N-BEATS<br>MSE<br>MAE |
|---------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------|
| 96      | 0.154<br>0.209                   | -                                 | 0.162<br>0.212                   | 0.149<br>0.198                   | 0.176<br>0.237                   | 0.172<br>0.220                   | 0.217<br>0.296                   | 0.173<br>0.223                   | 0.182<br>0.242                   | 0.152<br>0.210                   |                       |
| Weather | 192<br>326<br>720                | 0.197<br>0.246<br>0.315           | 0.248<br>0.285<br>0.336          | 0.204<br>0.242<br>0.326          | 0.194<br>0.241<br>0.337          | 0.220<br>0.282<br>0.319          | 0.219<br>0.261<br>0.306          | 0.226<br>0.236<br>0.338          | 0.225<br>0.285<br>0.334          | 0.199<br>0.260<br>0.311          |                       |
| 192     | 0.387<br>0.410<br>0.422<br>0.452 | 0.410<br>0.426<br>0.437<br>0.472  | 0.408<br>0.429<br>0.442<br>0.514 | 0.376<br>0.397<br>0.420<br>0.477 | 0.397<br>0.400<br>0.421<br>0.497 | 0.370<br>0.399<br>0.416<br>0.457 | 0.375<br>0.399<br>0.436<br>0.493 | 0.376<br>0.396<br>0.429<br>0.490 | 0.376<br>0.396<br>0.465<br>0.535 | 0.377<br>0.398<br>0.462<br>0.518 |                       |
| ETTh1   | 326<br>720                       | 0.349<br>0.403                    | 0.369<br>0.408                   | -                                | 0.354<br>0.373                   | 0.389<br>0.390                   | 0.379<br>0.380                   | 0.340<br>0.349                   | 0.355<br>0.379                   | 0.327<br>0.387                   |                       |
| 720     | 0.409<br>0.439                   | 0.399<br>0.435                    | 0.406<br>0.440                   | -                                | 0.404<br>0.441                   | 0.402<br>0.439                   | 0.416<br>0.443                   | 0.429<br>0.469                   | 0.439<br>0.474                   | 0.400<br>0.435                   |                       |
| 96      | 0.293<br>0.295<br>0.326<br>0.352 | 0.349<br>0.349<br>0.368<br>0.384  | 0.384<br>0.384<br>0.403<br>0.403 | 0.292<br>0.294<br>0.346<br>0.366 | 0.346<br>0.346<br>0.392<br>0.392 | 0.290<br>0.290<br>0.342<br>0.366 | 0.338<br>0.338<br>0.375<br>0.396 | 0.379<br>0.379<br>0.419<br>0.445 | 0.398<br>0.398<br>0.444<br>0.464 | 0.318<br>0.367<br>0.391<br>0.438 |                       |
| ETTm1   | 326<br>720                       | 0.326<br>0.416                    | 0.368<br>0.416                   | -                                | 0.332<br>0.366                   | 0.372<br>0.394                   | 0.332<br>0.369                   | 0.365<br>0.392                   | 0.374<br>0.406                   | 0.355<br>0.387                   |                       |
| 720     | 0.405<br>0.416                   | 0.437<br>0.429                    | 0.417<br>0.421                   | -                                | 0.421<br>0.457                   | 0.416<br>0.420                   | 0.420<br>0.427                   | 0.450<br>0.453                   | 0.508<br>0.533                   | 0.448<br>0.448                   |                       |
| 192     | 0.170<br>0.227<br>0.275          | 0.260<br>0.297<br>0.328           | 0.181<br>0.239<br>0.286          | 0.269<br>0.301<br>0.324          | 0.165<br>0.220<br>0.274          | 0.255<br>0.292<br>0.328          | 0.167<br>0.209<br>0.238          | 0.267<br>0.280<br>0.328          | 0.192<br>0.243<br>0.285          | 0.197<br>0.271<br>0.328          |                       |
| ETTm2   | 326<br>720                       | 0.365<br>0.387                    | 0.368<br>0.388                   | -                                | 0.373<br>0.407                   | 0.379<br>0.408                   | 0.380<br>0.408                   | 0.365<br>0.397                   | 0.355<br>0.382                   | 0.321<br>0.366                   |                       |
| 720     | 0.409<br>0.416                   | 0.437<br>0.429                    | 0.417<br>0.421                   | -                                | 0.421<br>0.457                   | 0.416<br>0.420                   | 0.421<br>0.450                   | 0.451<br>0.487                   | 0.417<br>0.441                   | 0.413<br>0.446                   |                       |
| 24      | 0.723<br>0.669<br>0.728          | 1.114<br>1.092<br>1.098           | 3.025<br>3.025<br>3.245          | 1.195<br>1.195<br>1.221          | 0.603<br>1.398<br>1.790          | 0.881<br>1.319<br>1.892          | 0.754<br>2.215<br>1.430          | 2.215<br>0.801<br>1.310          | 0.894<br>3.224<br>2.238          | 8.313<br>5.39<br>7.299           |                       |
| IL1     | 48<br>60<br>60                   | 0.728<br>0.883<br>0.883           | 1.098<br>1.126<br>1.126          | -                                | 0.882<br>0.963<br>0.979          | 1.430<br>1.963<br>2.057          | 0.834<br>0.963<br>0.975          | 1.260<br>1.825<br>2.072          | 0.945<br>0.848<br>0.857          | 3.144<br>4.628<br>7.283          |                       |
| 60      | 0.883<br>0.883                   | 1.126<br>1.126                    | 1.221<br>1.221                   | -                                | 0.979<br>0.979                   | 1.470<br>1.788                   | 0.788<br>2.368                   | 1.260<br>2.096                   | 0.900<br>2.857                   | 7.090<br>5.278                   |                       |
| ECL     | 96<br>326<br>720                 | 0.136<br>0.167<br>0.205           | 0.233<br>0.264<br>0.295          | -                                | 0.139<br>0.169<br>0.206          | 0.129<br>0.163<br>0.197          | 0.222<br>0.259<br>0.290          | 0.140<br>0.169<br>0.220          | 0.237<br>0.261<br>0.302          | 0.168<br>0.207<br>0.207          |                       |
| 720     | 0.205<br>0.295                   | 0.251<br>0.295                    | -                                | -                                | 0.153<br>0.169<br>0.206          | 0.251<br>0.266<br>0.297          | 0.240<br>0.261<br>0.297          | 0.249<br>0.261<br>0.302          | 0.184<br>0.210<br>0.245          | 0.207<br>0.247<br>0.270          |                       |
| 96      | 0.391<br>0.400<br>0.404          | 0.282<br>0.287<br>0.292           | -                                | -                                | 0.388<br>0.407<br>0.414          | 0.282<br>0.290<br>0.294          | 0.360<br>0.379<br>0.392          | 0.249<br>0.287<br>0.346          | 0.532<br>0.607<br>0.624          | 0.336<br>0.382<br>0.386          |                       |
| 192     | 0.400<br>0.404<br>0.414          | 0.287<br>0.292<br>0.292           | -                                | -                                | 0.407<br>0.412<br>0.450          | 0.290<br>0.294<br>0.312          | 0.256<br>0.264<br>0.286          | 0.248<br>0.264<br>0.346          | 0.532<br>0.607<br>0.653          | 0.310<br>0.382<br>0.407          |                       |
| 720     | 0.450<br>0.450                   | 0.310<br>0.310                    | -                                | -                                | 0.450<br>0.450                   | 0.312<br>0.312                   | 0.432<br>0.432                   | 0.286<br>0.315                   | 0.640<br>0.640                   | 0.350<br>0.350                   |                       |

### Anomaly detection

| Metric              | MOMENT <sub>0</sub> | MOMENT <sub>1b</sub> | GPT4TS  | TimesNet | Anomaly Transformer | DGHL    | k-NN    |
|---------------------|---------------------|----------------------|---------|----------|---------------------|---------|---------|
| Mean                | 0.585               | <b>0.628</b>         | 0.24    | 0.537    | 0.492               | 0.425   | 0.554   |
| Median              | 0.683               | <b>0.778</b>         | 0.31    | 0.541    | 0.432               | 0.331   | 0.594   |
| Std.                | 0.377               | 0.373                | 0.366   | 0.389    | 0.401               | 0.365   | 0.393   |
| Adj. F <sub>1</sub> | 3.410               | <b>3.005</b>         | 4.862   | 3.642    | 4.326               | 5.071   | 3.681   |
| Mean rank           | 3.00                | <b>3.00</b>          | 5.00    | 3.50     | 4.00                | 5.25    | 3.75    |
| Median rank         | 4.00                | <b>3.00</b>          | 6.00    | 4.00     | 4.00                | 4.50    | 3.00    |
| Wins/Losses         | 57/599              | 709/467              | 419/757 | 658/518  | 524/652             | 378/798 | 650/335 |

Statistical or