

CRUXEval

Code Reasoning, Understanding, and Execution Evaluation

Alex
Gu

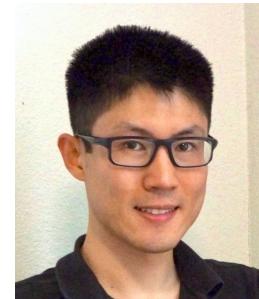
Baptiste
Rozière

Hugh
Leather

Armando
Solar-Lezama

Gabriel
Synnaeve

Sida
Wang



Technical preview

Your AI pair programmer

fetch_pic.js

push

```
1 const fetchNASAPictureOfTheDay = () => {
2   return fetch('https://api.nasa.gov/planetary/images/random')
3     .method: 'GET',
4     headers: {
5       'Content-Type': 'application/json',
6     },
7   })
8   .then(response => response.json())
9   .then(json => {
10     return json;
11   });
12 }
```

Copilot

Code Llama

PROMPT

In Bash, how do I list all text files in the current directory (excluding subdirectories) that have been modified in the last month?

Clear

Submit

RESPONSE

You can use the 'find' command in Bash to list all text files in the current directory (excluding subdirectories) that have been modified in the last month. The command would be:

```
find . -maxdepth 1 -type f -mtime -30 -name "*.txt"
```

Here is a breakdown of the command:

". specifies the current directory
'-maxdepth 1' tells 'find' to only search the current directory and not any subdirectories
'-type f' tells 'find' to only search for files (not directories or other types of files)
'-mtime -30' tells 'find' to only search for files that have been modified in the last 30 days
'-name "*.txt"' tells 'find' to only search for files with the '.txt' extension

Note that the 'm-time' option uses the number of days since the file was last modified, so '-mtime -30' means "modified in the last 30 days." If you want to search for files modified in

Code Llama

PROMPT

In Bash, how do I list all text files in the current directory (excluding subdirectories) that have been modified in the last month?

Clear **Submit**

RESPONSE

You can use the 'find' command in Bash to list all text files in the current directory (excluding subdirectories) that have been modified in the last month. The command would be:

```
find . -maxdepth 1 -type f -mtime -30 -name "*.txt"
```

Here is a breakdown of the command:

- ". specifies the current directory
- '-maxdepth 1' tells 'find' to only search the current directory and not any subdirectories
- '-type f' tells 'find' to only search for files (not directories or other types of files)
- '-mtime -30' tells 'find' to only search for files that have been modified in the last 30 days

deepseek coder

Code Llama

PROMPT

In Bash, how do I list all text files in the current directory (excluding subdirectories) that have been modified in the last month?

Clear **Submit**

RESPONSE

You can use the 'find' command in Bash to list all text files in the current directory (excluding subdirectories) that have been modified in the last month. The command would be:

```
find . -maxdepth 1 -type f -mtime -30 -name "*.txt"
```

Here is a breakdown of the command:

- '. specifies the current directory
- '-maxdepth 1' tells 'find' to only search the current directory and not any subdirectories
- '-type f' tells 'find' to only search for files (not directories or other types of files)
- '-mtime -30' tells 'find' to only search for files that have been modified in the last month

Research

GPT-4 is OpenAI's most advanced system, producing safer and more useful responses

HumanEval

- 164 Programming Problems
- Metric: pass@k

```
from typing import List
def has_close_elements(numbers: List[float], threshold: float) ->
bool:
    """Check if in given list of numbers, are any two numbers closer
    to each other than given threshold.

    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
    False

    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
    True
    """
```


Sebastien Bubeck
@SebastienBubeck

...

New LLM in town:

phi-1 achieves 51% on HumanEval w. only 1.3B parameters & 7B tokens training dataset

Any other >50% HumanEval model is >1000x bigger (e.g., WizardCoder from last week is 10x in model size and 100x in dataset size).

How?

Textbooks Are All You Need

Phind

@phindsearch

...

We beat GPT-4 on HumanEval with fine-tuned CodeLlama-34B!

Here's how we did it: phind.com/blog/code-llam...

Both models have been open-sourced on Huggingface:

Sebastien Bubeck
@SebastienBubeck

New LLM in town:

***phi-1 achieves 51% on
training dataset***

Any other >50% HumanE
from last week is 10x in r

How?

***Textbooks Are All You

Phind

huggingface.co/Phind

huggingface.co/Phind

Phind

@phindsearch

...

WizardLM

@WizardLM_AI

...

Sebasti
@Sebas

Introduce the newest **WizardCoder 34B** based on Code Llama.

New LLM in tc

WizardCoder-34B surpasses **GPT-4**, **ChatGPT-3.5** and **Claude-2** on HumanEval with **73.2% pass@1**

***phi-1 achie
training datas

Demo: <http://47.103.63.15:50085/>

Any other >50
from last wee

Model Weights: huggingface.co/WizardLM/Wizar...

Github: github.com/nlpxucan/Wizar...

How?

***Textbooks Are All You

huggingface.co

huggingface.co/Phind

Phind

@phindsearch

WizardLM

anton

@abacaj

Releasing mistral-7b-sft, an initial fine-tune for code completion, explanation and repair. MMLU scores dropped from the base mistral model (as expected) but still much higher than codellama model and comparable to llama-2 7b

HumanEval: pass@1 54.27%

MMLU: 45.89%

***Textbooks Are All You

Do LLMs solve HumanEval like us?

Do LLMs solve HumanEval like us?

**Code
Reasoning**

**Code
Understanding**

**Code
Execution**

Do LLMs solve HumanEval like us?

Code
Reasoning

Code
Understanding

Code
Execution

We can perform these tasks when
solving HumanEval, but can models?

CRUXEval-I and CRUXEval-O

Input Prediction (I)

Find an input producing a given output

(code understanding + reasoning)

Output Prediction (O)

Execute the function on a given input

(code execution)

```
def f(string):
    string_x = string.rstrip("a")
    string = string_x.rstrip("e")
    return string

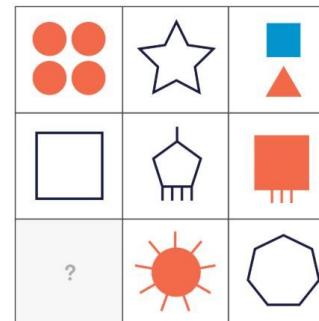
# output prediction, CRUXEval-O
assert f("xxxxaaee") == ???
## GPT4: "xxxx", incorrect

# input prediction, CRUXEval-I
assert f(???) == "xxxxaa"
## GPT4: "xxxxaae", correct
```

The Importance of CRUXEval

**LLMs for Software
Engineering**

**LLMs for Symbolic
Reasoning**



- (A)
- (B)
- (C)
- (D)

Part 1: Benchmark Creation

Creating a benchmark to measure code execution

Part 2: Benchmark Evaluation

Can code LMs understand, reason, and execute code like us?

Part 3: CoT and Fine-Tuning

Are standard tricks enough to solve CRUXEval?

Part 1: Benchmark Creation

Creating a benchmark to measure code execution

Part 2: Benchmark Evaluation

Can code LMs understand, reason, and execute code like us?

Part 3: CoT and Fine-Tuning

Are standard tricks enough to solve CRUXEval?

Benchmark Creation

Scalability

Methodology allows for future benchmarks

Simplicity

Ensure benchmark samples are reasonable

Diversity

Tests reasoning for a variety of constructs

Data Model	Evaluation Model	Input Pass@1	Output Pass@1
CL 13B	CL 13B	28.1%	28.4%
CL 13B	CL 34B	33.8%	29.2%
CL 34B	CL 13B	25.1%	24.3%
CL 34B	CL 34B	29.9%	25.4%
CL 34B	GPT-3.5	40.5%	36.6%
GPT-3.5	CL 13B	42.3%	49.7%
GPT-3.5	CL 34B	52.1%	50.7%
GPT-3.5	GPT-3.5	67.1%	67.2%
GPT-4	CL 13B	28.1%	42.4%
GPT-4	CL 34B	37.0%	44.6%

Weak evidence that data-generating model does not seem to have significant impact on performance

Benchmark Creation

Scalability

Methodology allows for future benchmarks

Simplicity

Ensure benchmark samples are reasonable

Diversity

Tests reasoning for a variety of constructs

Benchmark Creation

Scalability

Methodology allows for future benchmarks

Simplicity

Ensure benchmark samples are reasonable

Diversity

Tests reasoning for a variety of constructs

Benchmark Candidate Filtering

1. No imports in function
2. Length of code is between 75 and 300 characters
3. All arithmetic operations must be integer operations
4. No arithmetic operations involving two numerics over 4 in absolute value.
5. Finish running in 2 seconds

Benchmark Creation

Scalability

Methodology allows for future benchmarks

Simplicity

Ensure benchmark samples are reasonable

Diversity

Tests reasoning for a variety of constructs

You will be given a function name between [TASK] and [/TASK] tags. Following the examples given, write
→ a Python function that makes use of the given function and 5 test inputs for that function.

[TASK]

list.append

[/TASK]

[PYTHON]

```
def f(nums):  
    count = len(nums)  
    for i in range(-count+1, 0):  
        nums.append(nums[i])  
    return nums
```

[/PYTHON]

[TEST]

```
assert f([2, 6, 1, 3, 1]) == ??  
assert f([7, 1, 2, 6, 0, 2]) == ??  
assert f([4, 3, 2, 1, 2, -1, 4, 2]) == ??  
assert f([0, 6, 2, -1, -2]) == ??  
assert f([-6, -2, 1, -3, 0, 1]) == ??
```

[/TEST]

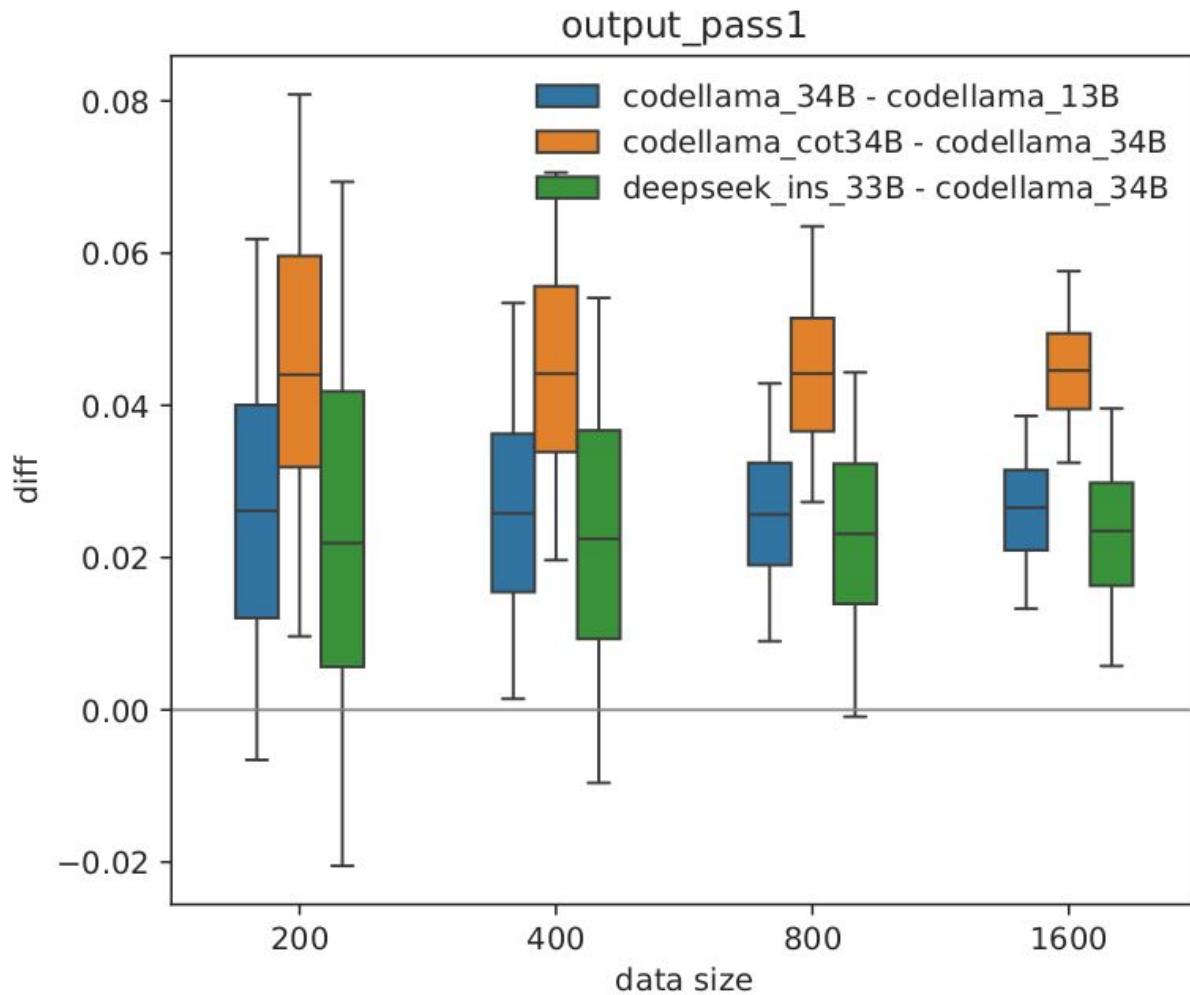
[TASK]

str.zfill

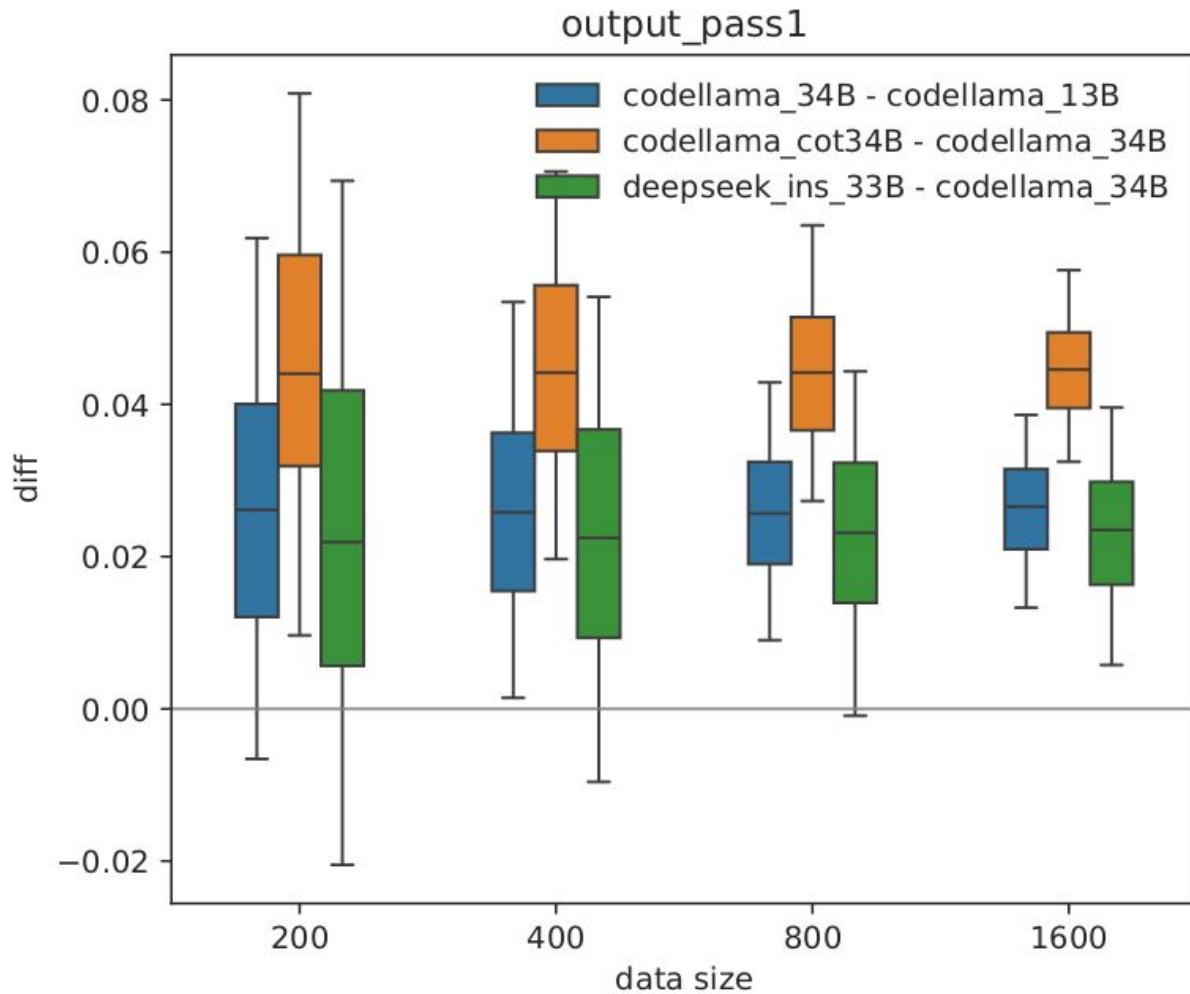
[/TASK]

[PYTHON]

$n_samples = 800$
 $n_generations = 10$



`n_samples` = 800
`n_generations` = 10
data noise: 1.5%
model noise: 0.2%



Part 1: Benchmark Creation

Creating a benchmark to measure code execution

Part 2: Benchmark Evaluation

Can code LMs understand, reason, and execute code like us?

Part 3: CoT and Fine-Tuning

Are standard tricks enough to solve CRUXEval?

Benchmark Evaluation

Prompts

How do we prompt
models on our
benchmark?

Accuracies

How do code LMs
perform on our
benchmark?

Insights

What do results on our
benchmark suggest
about code LMs?

You will be given a function f and an output in the form $f(??) == \text{output}$. Find any input such that
→ executing f on the input leads to the given output. There may be multiple answers, but you
→ should only output one. Think step by step before arriving at an answer. Finally, surround the
→ answer, with no additional words, with **[ANSWER]** and **[/ANSWER]** tags. Express your answer as a
→ function call that when executed will give the output.

[PYTHON]
def f(my_list):
 count = 0
 for i in my_list:
 if len(i) % 2 == 0:
 count += 1
 return count
assert f(??) == 3
[/PYTHON]
[ANSWER]
f(["mq", "px", "zy"])
[/ANSWER]

instruction

example

[PYTHON]
{function}
assert f(??) == {output}
[/PYTHON]
[ANSWER]

query

Input Prediction Prompt

Based on the given Python code, which may contain errors, complete the assert statement with the
→ output when executing the code on the given test case. Do NOT output any extra information,
→ even if the function is incorrect or incomplete. Do NOT output a description for the assert.

```
def f(n):  
    return n  
assert f(17) == 17
```

```
{function}  
assert f({input}) ==
```

Output Prediction Prompt

Benchmark Evaluation

Prompts

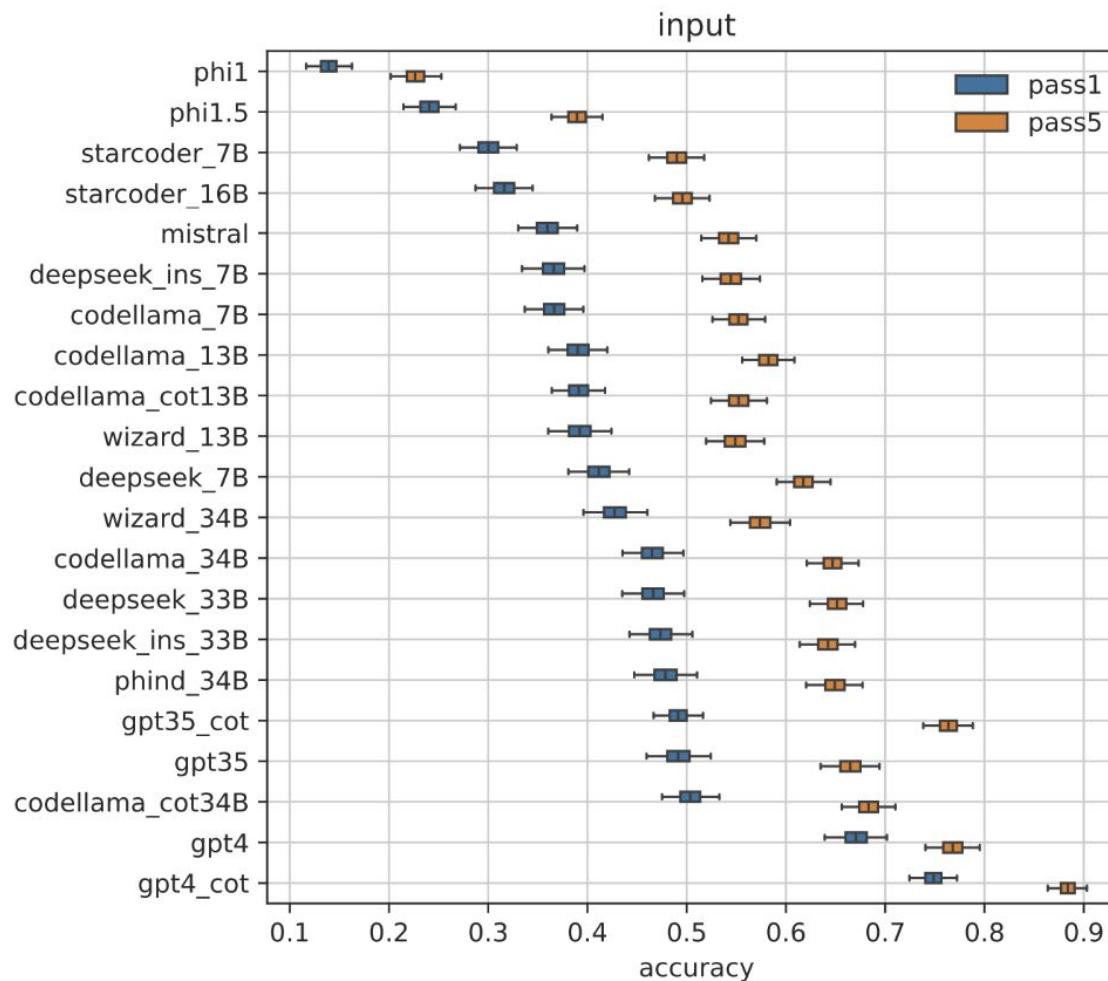
How do we prompt
models on our
benchmark?

Accuracies

How do code LMs
perform on our
benchmark?

Insights

What do results on our
benchmark suggest
about code LMs?



GPT-4 + CoT Failures

```
def f(text, suffix):
    if suffix == '':
        suffix = None
    return text.endswith(suffix)
assert f('uMeGndkGh', 'kG') == ???
# GPT-4 CoT: True
# should be False
```

```
def f(num):
    if 0 < num < 1000 and num != 6174:
        return 'Half Life'
    return 'Not found'
assert f(6173) == ???
# GPT-4 CoT: 'Half Life'
# should be 'Not found'
```

```
def f(text, repl):
    trans = str.maketrans(text.lower(), repl.
        → lower())
    return text.translate(trans)
assert f(???) == 'lwwer case'

# GPT4 CoT: 'lower case', 'ow'
# could be 'lower case', 'lwwer case'
```

```
def f(text):
    string = ''
    for char in text:
        string += char + char.lower()
    return string
assert f(???) == 'llaallaakk'
# GPT-4 CoT: 'LAK'
# should be 'lalak'
```

CRUXEval-I

#	Model	pass@1	pass@5
1	gpt-4-0613+cot	75.5	88.9
2	gpt-4-0613	69.8	76.8
3	gpt-3.5-turbo-0613+cot	50.3	74.9
4	codellama-34b+cot	50.1	73.8
5	codetulu-2-34b	49.3	68.0
6	gpt-3.5-turbo-0613	49.0	63.2
7	codellama-13b+cot	47.4	68.4
8	codellama-34b	47.2	66.6
9	phind	47.2	63.9
10	deepseek-base-33b	46.5	64.9

CRUXEval-O

#	Model	pass@1	pass@5
1	gpt-4-0613+cot	77.1	88.2
2	gpt-4-0613	68.7	73.0
3	gpt-3.5-turbo-0613+cot	59.0	76.7
4	deepseek-instruct-33b	49.9	61.8
5	gpt-3.5-turbo-0613	49.4	59.3
6	deepseek-base-33b	48.6	61.6
7	codetulu-2-34b	45.8	58.9
8	magicoder-ds-6.7b	44.4	57.5
9	codellama-34b+cot	43.6	69.4
10	deepseek-base-6.7b	43.5	54.8

Function Anonymization

Original

```
def f(s):  
    nums = ''.join(filter(lambda c:c.isdecimal(), s))  
    if nums == '': return 'none'  
    m = max([int(num) for num in nums.split(',')])  
    return str(m)  
assert f('01,001') == '1001'
```

Anonymized

```
def f(x0):  
    x1 = ''.join(filter(lambda x2: x2.isdecimal(), x0))  
    if x1 == '':  
        return 'none'  
    x3 = max([int(x4) for x4 in x1.split(',')])  
    return str(x3)  
assert f('01,001') == '1001'
```

No significant drop from anonymizing variable names!

Model	Anonymized	Input Prediction		Output Prediction	
		Pass@1	Pass@5	Pass@1	Pass@5
CodeLlama 7B	✗	36.6%	48.0%	36.4%	43.5%
	✓	37.5%	53.3%	34.0%	46.9%
	△	+0.9%	+5.3%	-2.4%	+3.4%
CodeLlama 13B	✗	39.0%	50.2%	38.3%	44.7%
	✓	40.0%	55.8%	36.1%	50.6%
	△	+1.0%	+5.6%	-2.2%	+5.9%
CodeLlama 34B	✗	46.5%	57.4%	41.1%	47.5%
	✓	48.0%	63.8%	39.1%	54.0%
	△	+1.5%	+6.4%	-2.0%	+6.5%

Benchmark Evaluation

Prompts

How do we prompt
models on our
benchmark?

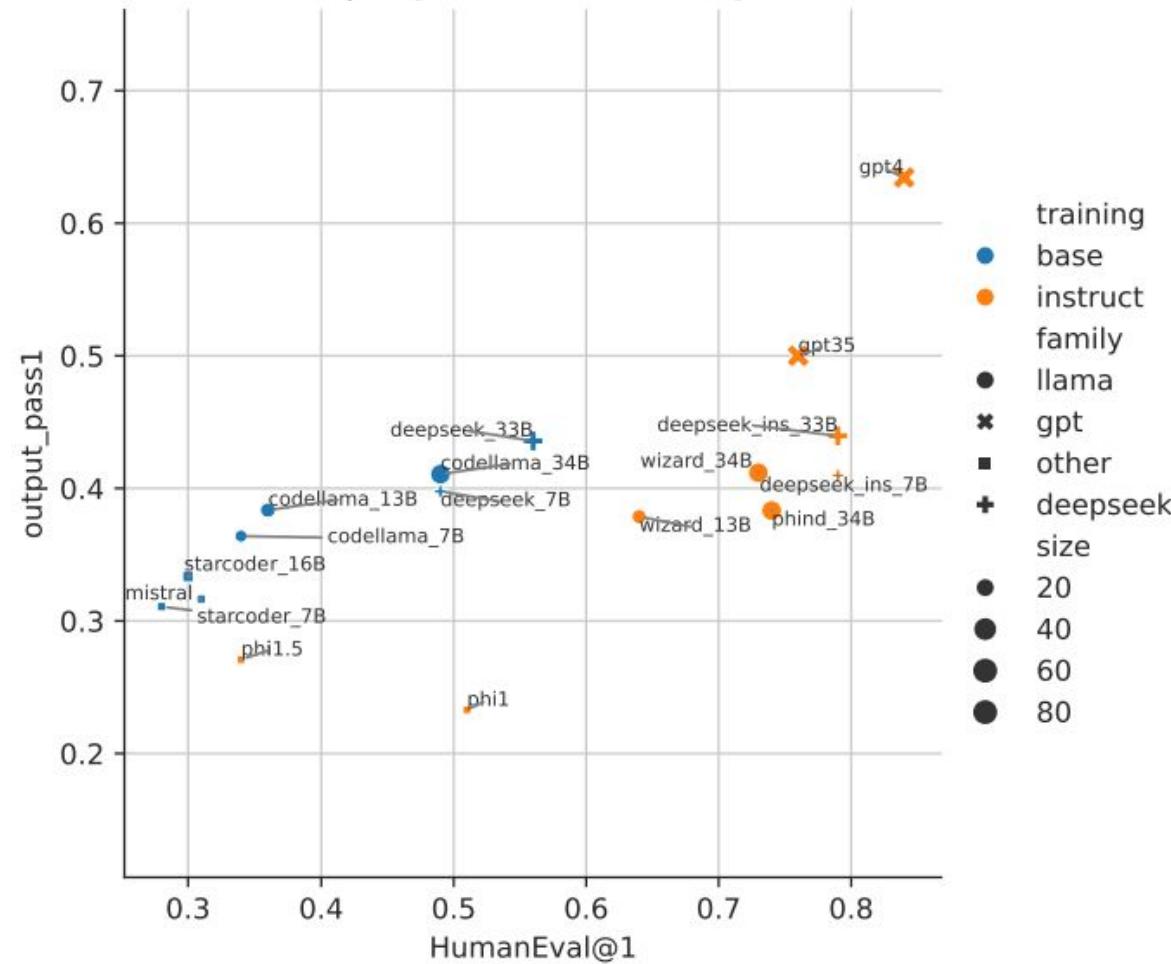
Accuracies

How do code LMs
perform on our
benchmark?

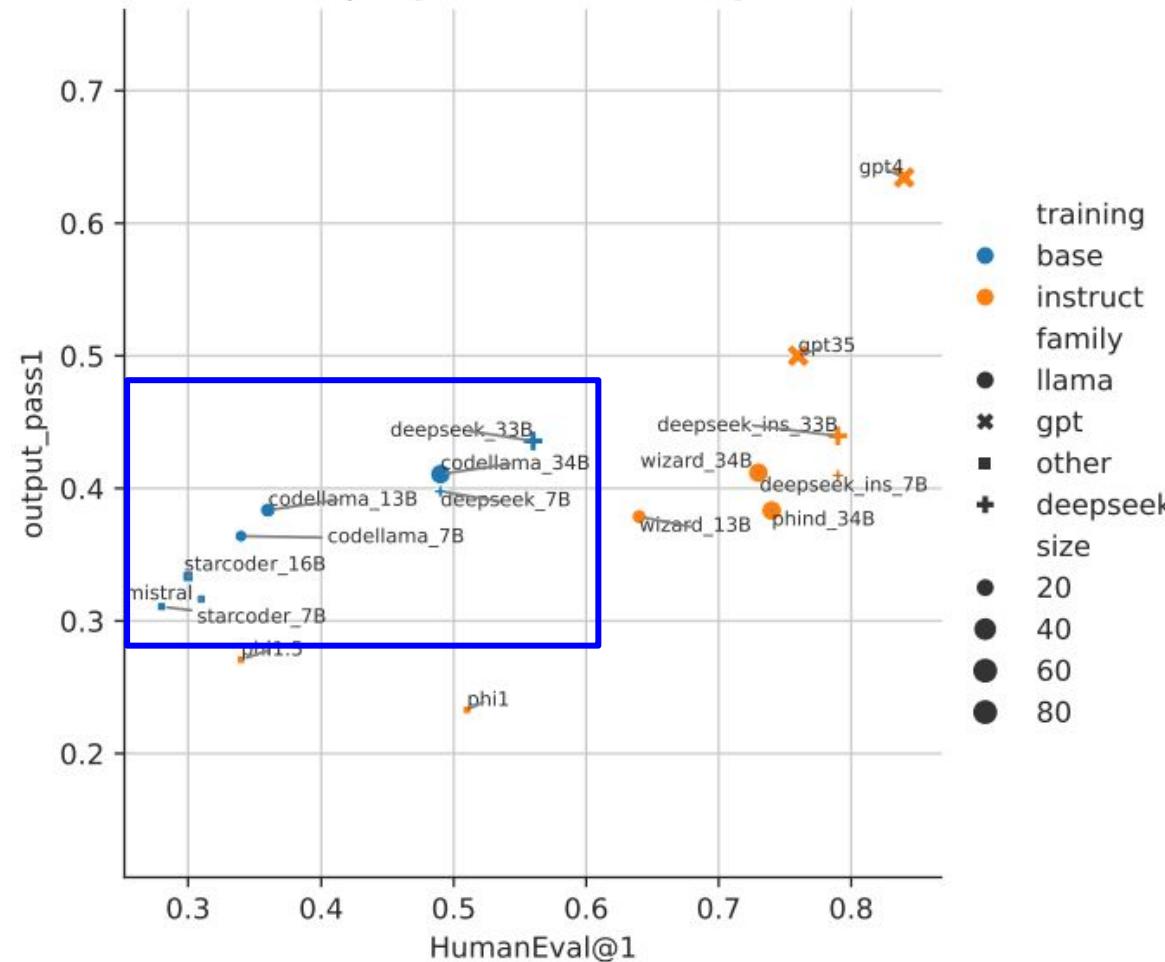
Insights

What do results on our
benchmark suggest
about code LMs?

output@1 vs. HumanEval@1

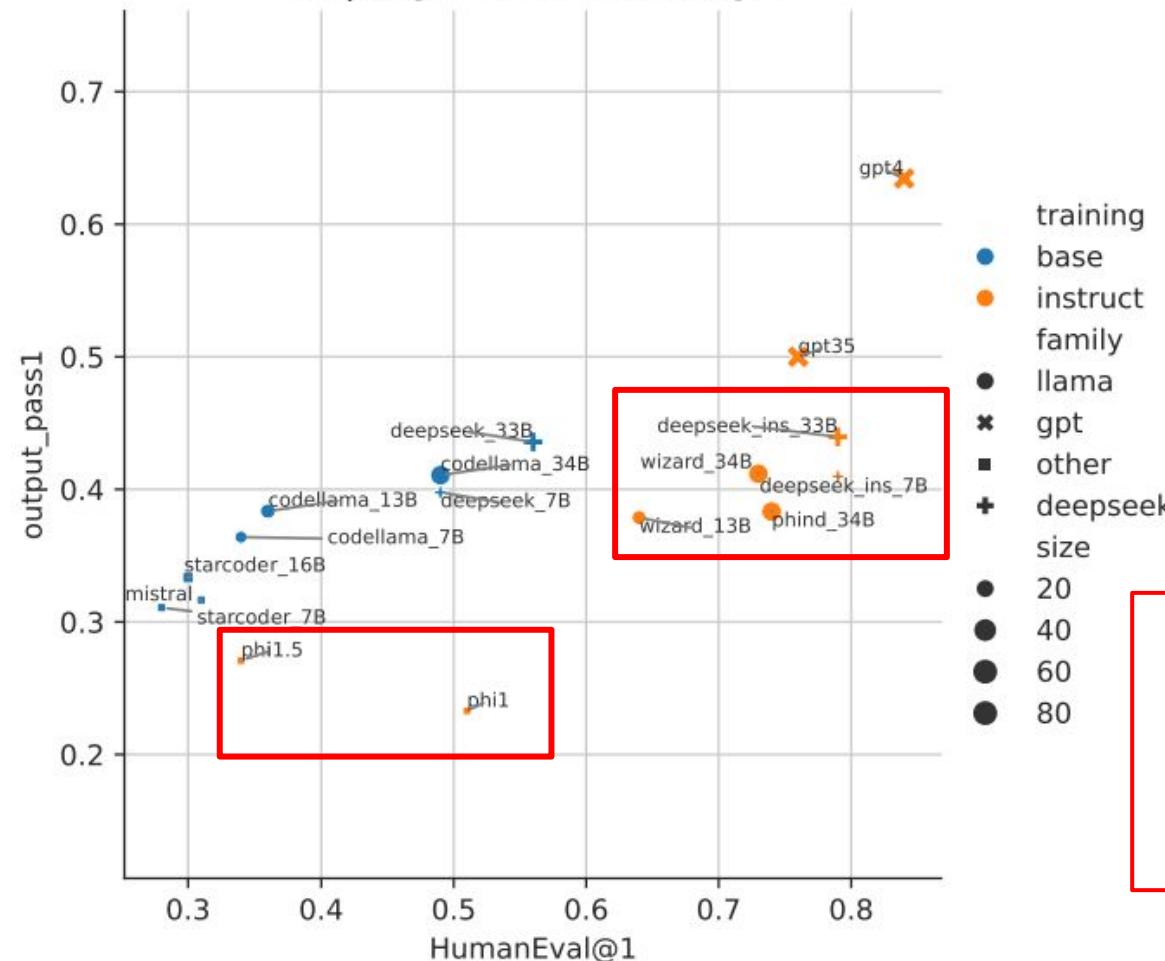


output@1 vs. HumanEval@1



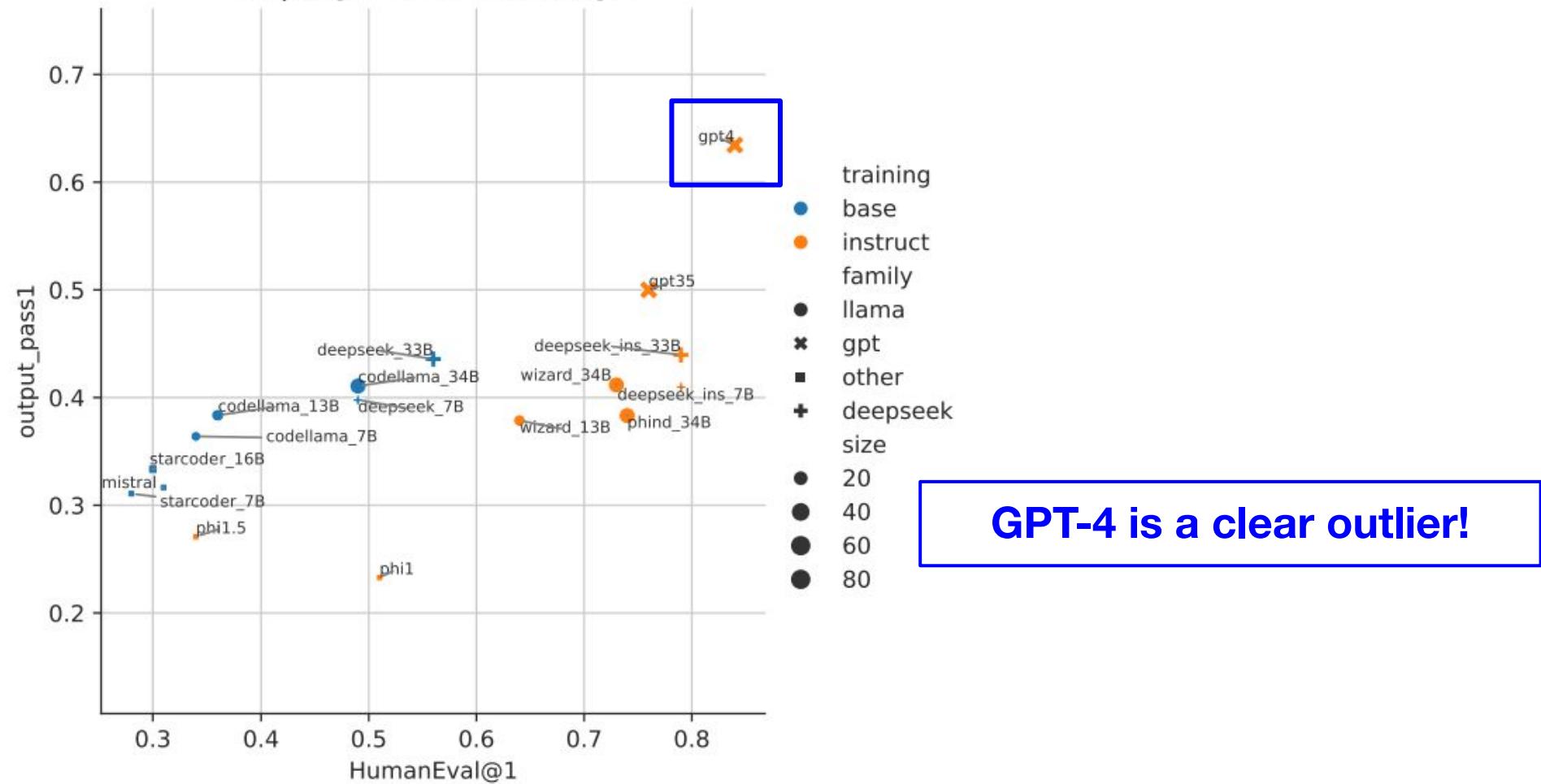
Base models show a correlation.

output@1 vs. HumanEval@1

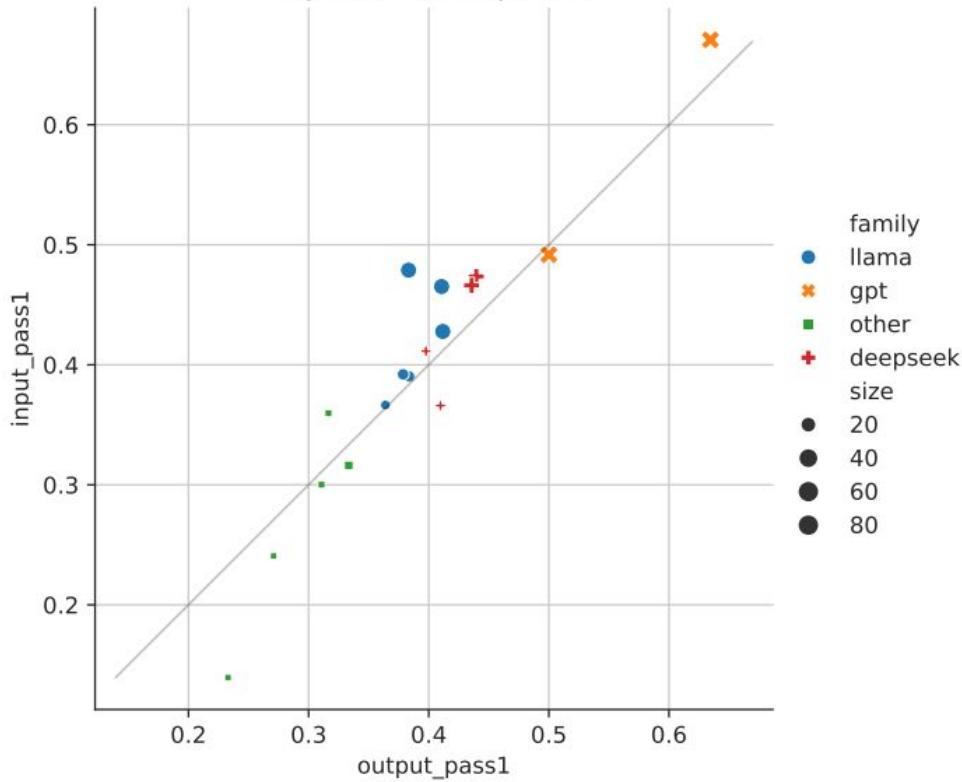


Models distilled on GPT data (WizardCoder, Phind, Phi) do NOT perform better than their base models!

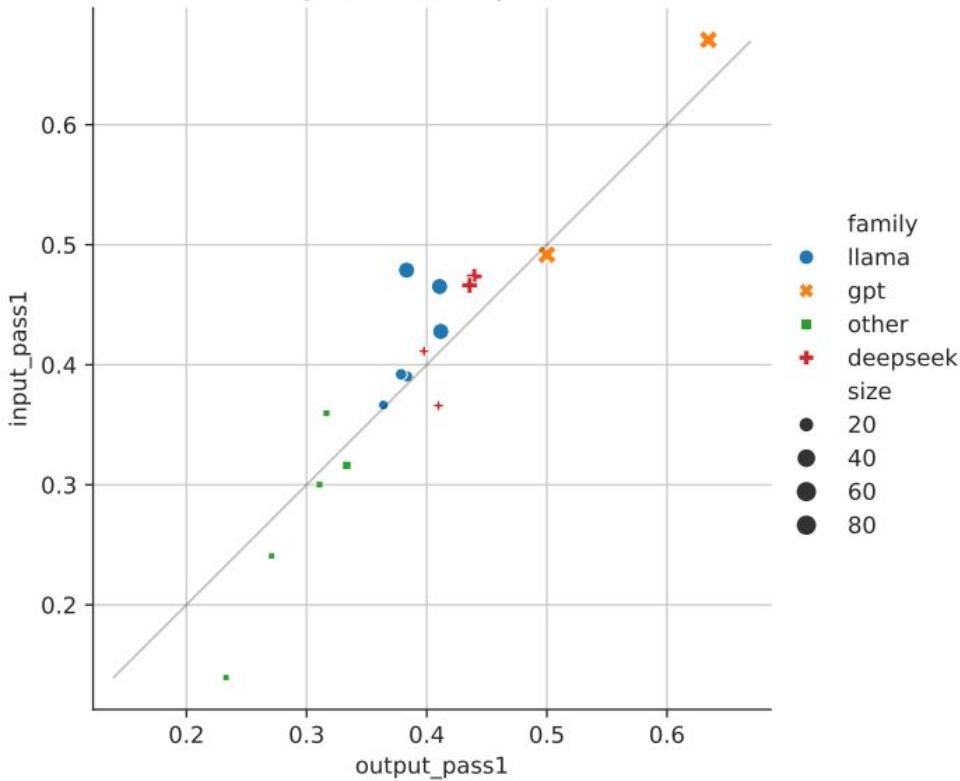
output@1 vs. HumanEval@1



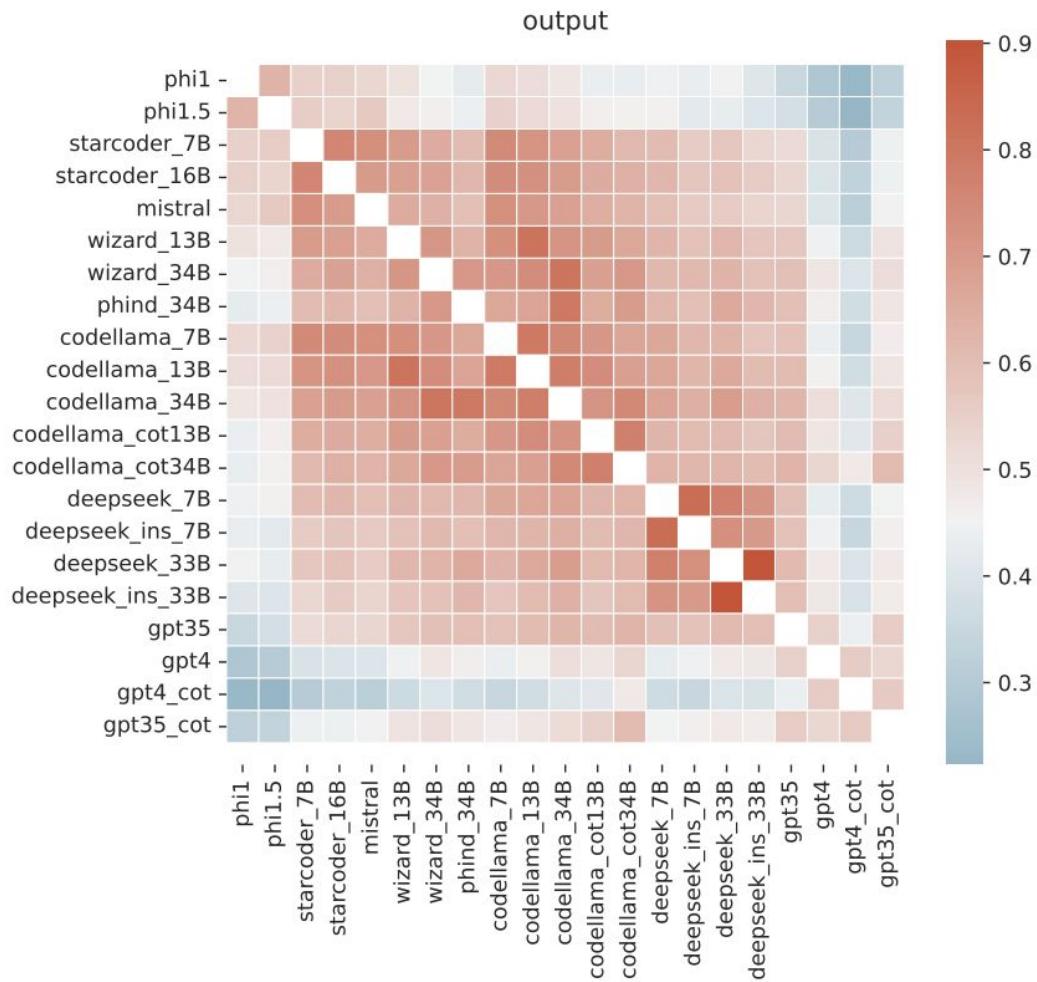
input@1 vs. output@1



input@1 vs. output@1

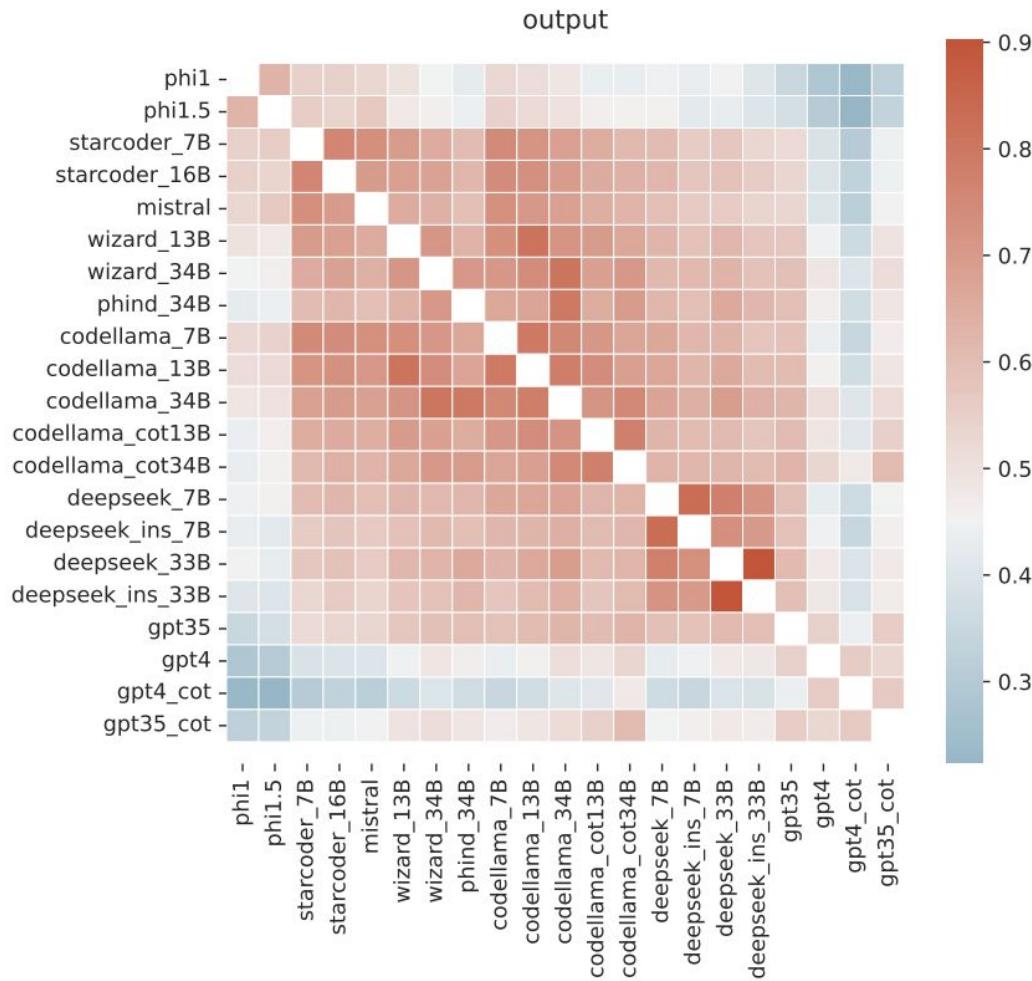


- 1. Input and output prediction scores are correlated!**
- 2. Clear improvements from model scaling!**



Strong correlations between:

- **Sizes of same model**
- **Models of same size**
- **Instruct-base pairs**



Strong correlations between:

- **Sizes of same model**
- **Models of same size**
- **Instruct-base pairs**

However, still many examples where worse models succeed but better models fail completely!

Part 1: Benchmark Creation

Creating a benchmark to measure code execution

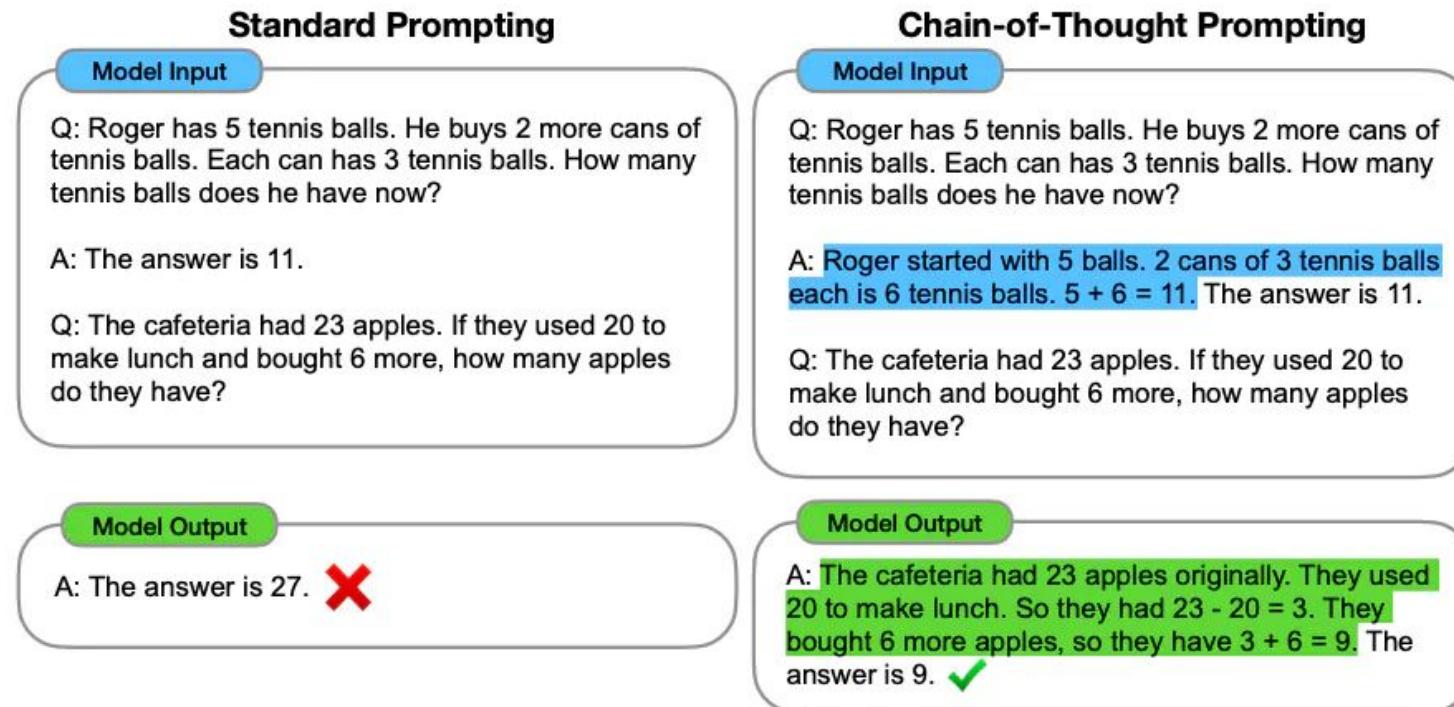
Part 2: Benchmark Evaluation

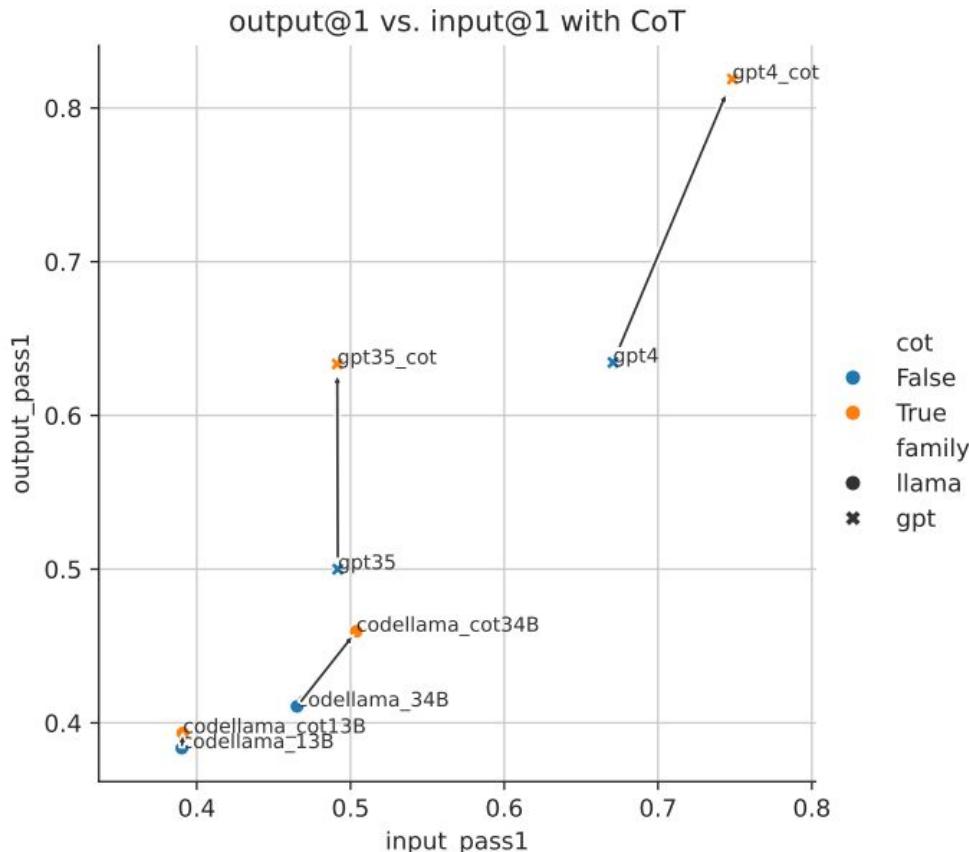
Can code LMs understand, reason, and execute code like us?

Part 3: CoT and Fine-Tuning

Are standard tricks enough to solve CRUXEval?

Chain-of-Thought Prompting

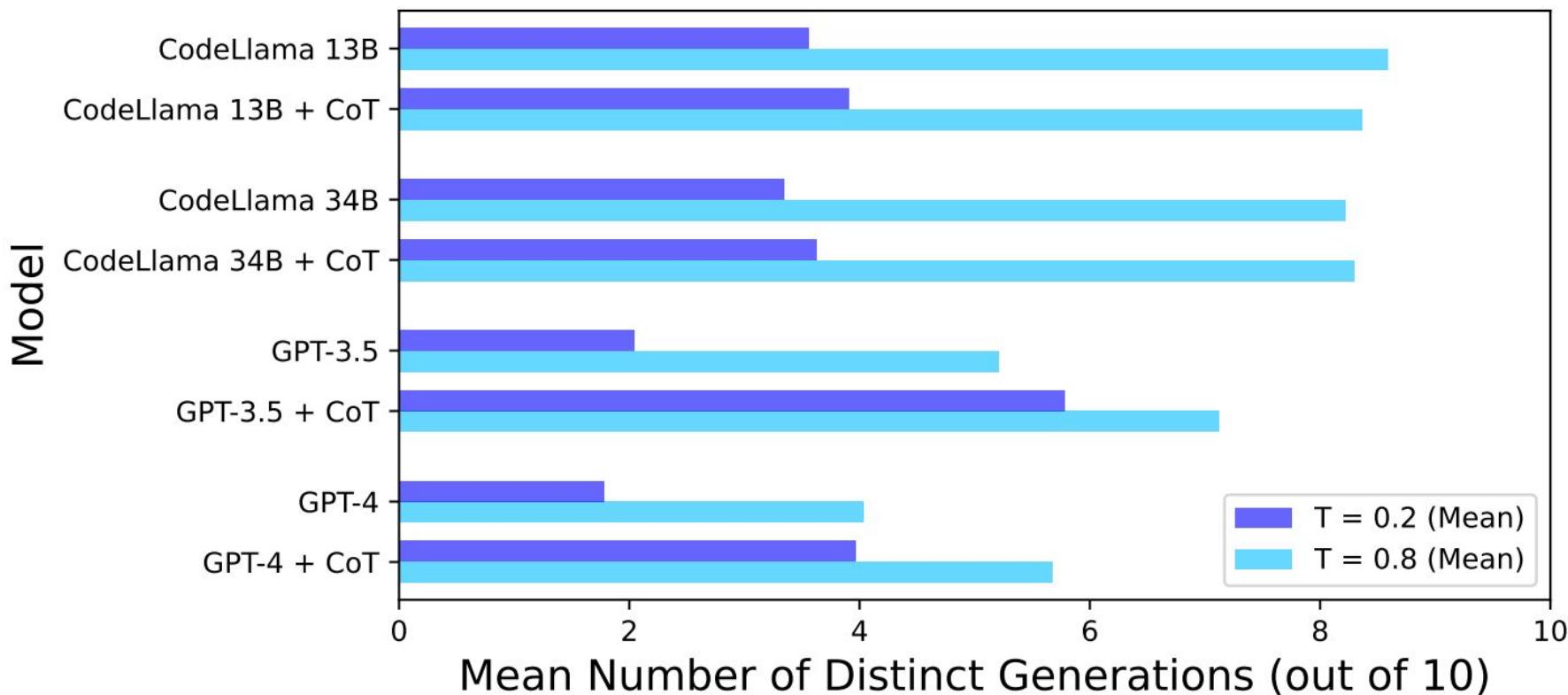




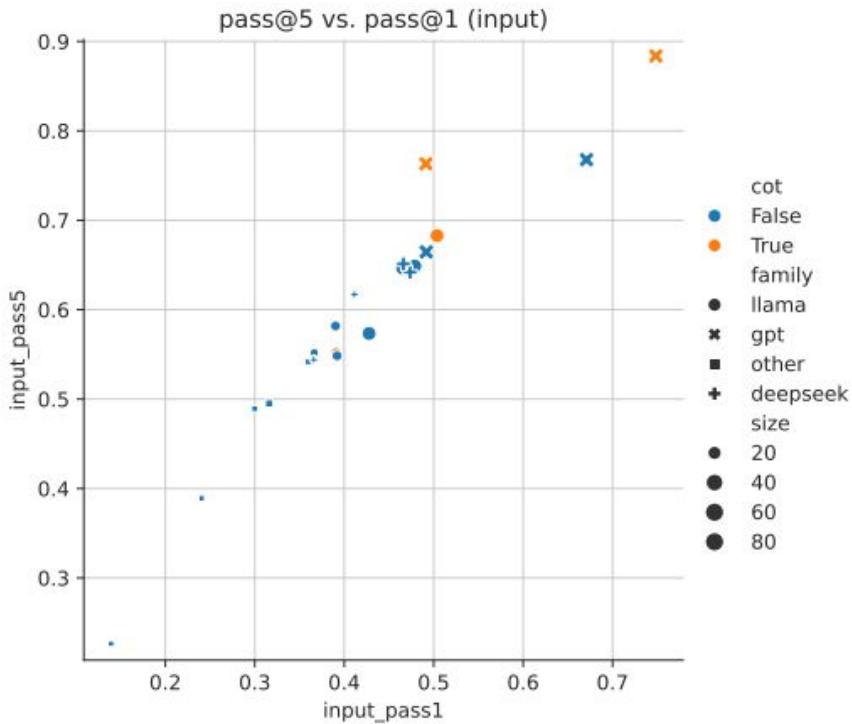
- 1. GPT-4, GPT-3.5 output benefits significantly more than CoT than others**
- 2. CoT helps more for output prediction than input prediction**
- 3. Code Llamas benefit very slightly from CoT**

Model	CoT	Input Prediction		Output Prediction	
		Pass@1	Pass@5	Pass@1	Pass@5
Code Llama 13B	✗	39.0%	58.2%	38.4%	53.2%
	✓	39.1%	55.2%	39.3%	59.9%
	-	+0.1%	-3.0%	+0.9%	+6.7%
Code Llama 34B	✗	46.5%	64.7%	41.1%	56.1%
	✓	50.4%	68.3%	46.0%	65.3%
	-	+3.9%	+3.6%	+4.9%	+9.2%
GPT-3.5	✗	49.2%	66.5%	50.0%	60.1%
	✓	49.1%	76.3%	63.3%	81.2%
	-	-0.1%	+9.8%	+13.3%	+21.1%
GPT-4	✗	67.1%	76.8%	63.4%	68.7%
	✓	74.8%	88.4%	81.9%	90.7%
	-	+7.7%	+11.6%	+18.5%	+22.0%

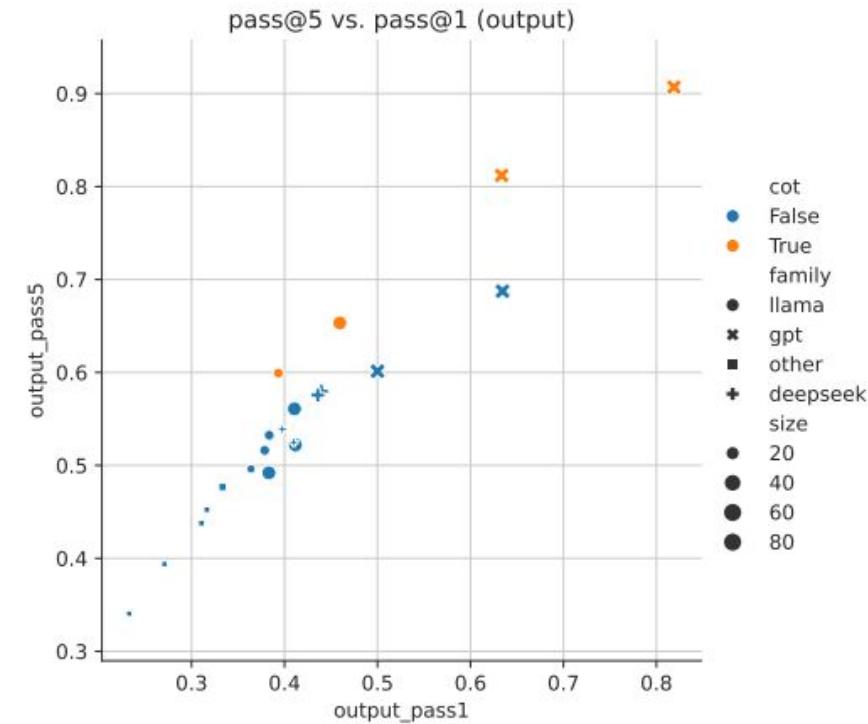
Impact of CoT on Diversity of Generations (Input)



CoT increases diversity of generations for GPT!



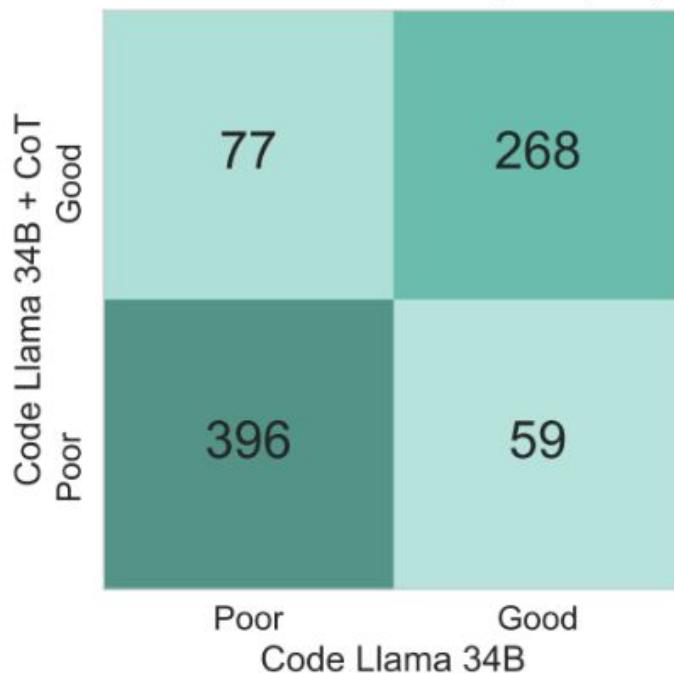
(a) Input prediction



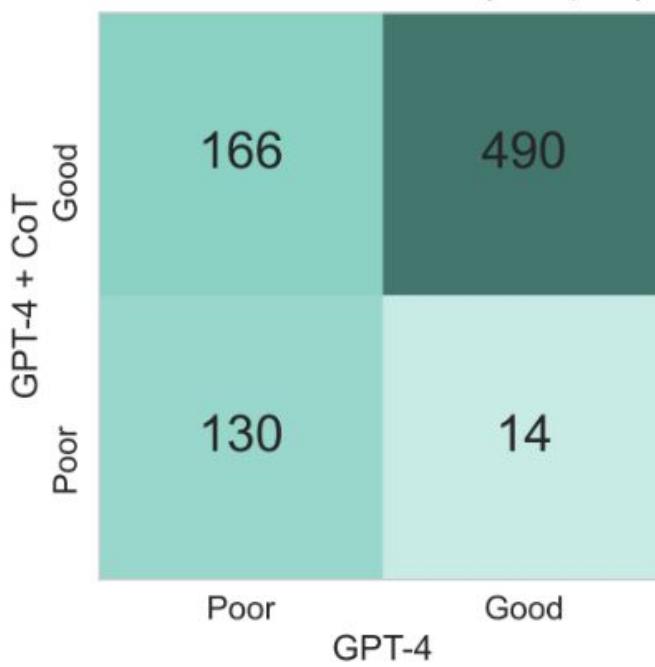
(b) Output prediction

CoT increases the gap between pass@1 and pass@5

Confusion Matrix (Output)



Confusion Matrix (Output)



Confusion Matrix (Output)

	Code Llama 34B + CoT Good	77	268
Code Llama 34B Poor		396	59
	Poor	59	268
	Good	396	77

Confusion Matrix (Output)

	GPT-4 + CoT Good	166	490
GPT-4 Poor		130	14
	Poor	14	166
	Good	490	130

For CodeLlama 13B, 34B, and GPT-3.5, we observe a large number of samples where direct prediction succeeds but CoT fails.

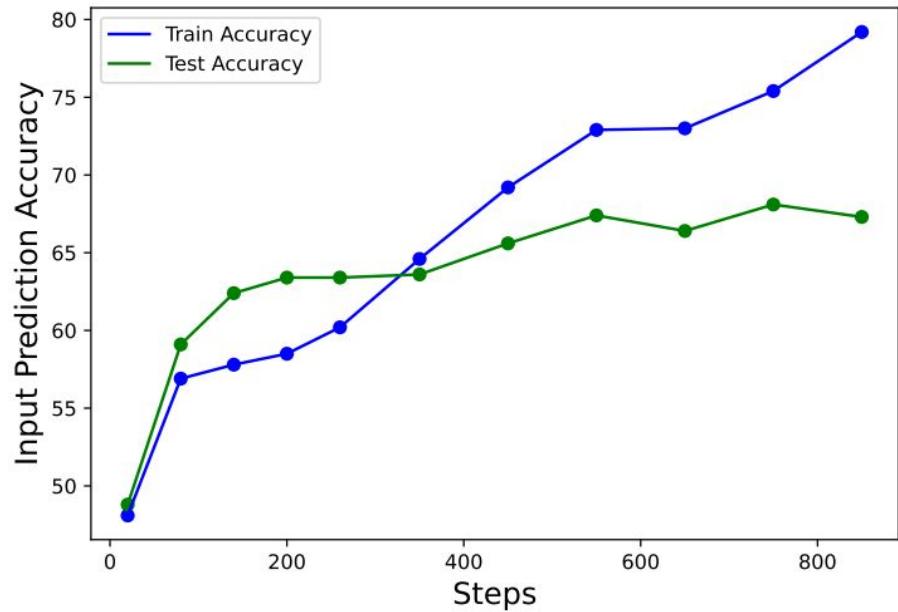
Fine-Tuning

Fine-tuned Code Llama 34B on ~140K function, input, and output samples

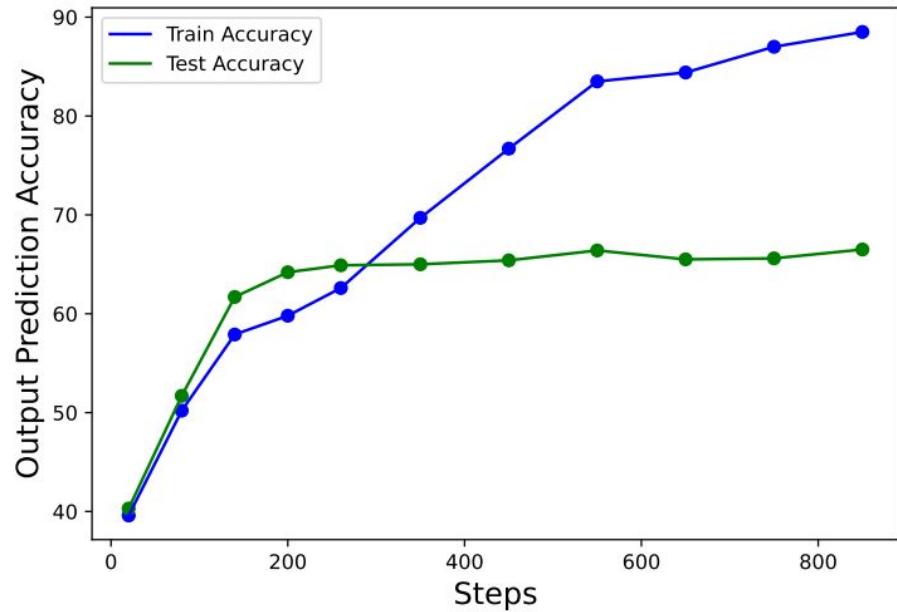
Decontamination: 50% function level, 50% test level

Separate fine-tuning for input and output tasks

Fine-Tuning with Benchmark Programs (Input)



Fine-Tuning with Benchmark Programs (Output)



- 1. Easy to overfit training set**
- 2. Significant improvements from baseline, but plateaus at 70%**

Our contributions

CRUXEval Benchmark

*measuring code
understanding skills that
are easy for humans*

Evaluation on Popular LLMs

*impact of distilling from
GPT, correlation with
HumanEval*

Enhancements and Insights

*chain-of-thought,
fine-tuning*

Impact of the Work

Capabilities Beyond Generation

existing benchmarks are not enough to faithfully evaluate software engineering applications

Framework for Benchmarking

our benchmarking principles allow this methodology to be used to evaluate other aspects of code models

Highlighting Existing Progress

GPT-4 failures, limits of fine-tuning, CoT effectiveness gap

CRUXEval

Code Reasoning, Understanding, and Execution Evaluation

Website: <https://crux-eval.github.io/>

Leaderboard: <https://crux-eval.github.io/leaderboard.html>

