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Introduction

Distributed system: Samples {si}Ni=1
i.i.d.∼ P0 are evenly stored in m machines

M1, . . .Mm with N = mn.
Empirical risk minimization task: minθ

∑m
j=1

∑
i∈Mj

ℓ(si;θ).

Local gradient averages: gj(θ) = n−1∑
i∈Mj

∇θℓ(si;θ) ∈ Rd.

Distributed optimization procedure: θt+1 = θt − αm−1∑m
j=1 gj(θt).
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Figure 1. Byzantine attacks in distributed learning system.

Byzantine machines: ⌊ϱm⌋ local machines on which samples are poisoned{
si ∼ P0 if si ∈ Mj ∈ G (Good)
si ≁ P0 if si ∈ Mj ∈ B (Byzantine).

Byzantine robust learning: aggregating {gj} via robust mean estimators (Yin
et al., 2018; Zhu et al., 2023)
A complementary task: the Byzantine machine identification

Formulate the Identification as Multiple Testing

Translate the identification into statistical multiple testing:
H0j : Mj ∈ G v.s. H1j : Mj ∈ B j ∈ [m].

A mean test framework:
H0j : E[gj(θ0)] = µ∗ v.s. H1j : E[gj(θ0)] ̸= µ∗ j ∈ [m],

with some given θ0. The true center µ∗ can be robustly estimated
Criterion for multiple testing: false discovery proportion and true positive
proportion,

FDP(B̂) = |B̂ ∩ G|
|B̂| ∨ 1

, TPP(B̂) = |B̂ ∩ B|
|B|

.

Goal: FDR = E(FDP) ≤ α.

Failure of traditional Outlier detection via p-values

Outlier detection methods (Filzmoser et al., 2008; Ro et al., 2015):
1. Obtain robust center µ̂
2. Build some mean test statistics and obtain the p‐values based on the asymptotic theory
3. Apply the BH method (Benjamini and Hochberg, 1995)
Problem of the strategy: the asymptotic distributions of the statistics are heavily
dimension‐dependent.

Hotelling’s T 2 for fixed/small d v.s. Gaussian for large d.

Our solution: A sample‐splitting‐based, p‐value‐free and dimension‐agnostic
procedure, ByMI.

ByMI Procedure

1. Randomly split the samples on eachMj into {D(k)
j }k=1,2 with equal size.

2. Obtain a robust mean estimator ĝ(θ) based on D(1)
j

3. Compute scoreWj = {g1j(θ)− ĝ(θ)}⊤Ω{g2j(θ)− ĝ(θ)}, j ∈ [m].
4. Choose the threshold L > 0 as

L = inf
{
ℓ > 0 :

1 + #{j : Wj ≤ −ℓ}
#{j : Wj ≥ ℓ} ∨ 1

≤ α

}
,

FDR level α > 0; Detected Byzantine machines B̂ = {Mj : Wj ≥ L}.

ByMI is p‐value free and dimension‐insensitive. Conditional on {D(1)
j },Wj is an

univariate projection of g2j(θ)− ĝ(θ) and enjoys the symmetric property.
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=
#{j : Wj ≤ −L}

#{j : Wj ≥ L} ∨ 1

×
#{j : Wj ≥ L, j ∈ G}

#{j : Wj ≤ −L}

≤α×
#{j : Wj ≥ L, j ∈ G}

#{j : Wj ≤ −L, j ∈ G}
≈α (by symmetricity ofWj).

Choices of Ω.
Scale matrix: Ω = diag{σ̂−2

1 , . . . , σ̂−2
d }

Projection matrix: Ω = v1v⊤1 , where v1 is the first eigenvector of Cov({g1j(θ)}).

Theoretical Guarantees

Conditions: ∥µ̂− µ∗∥ = O(δµ); Lq‐L2‐norm equivalence of the gradients;

Finite‐sample FDR control.
Denote ωn = n−(1−2η2)κ/2 with some η ∈ (0, 1/

√
2). With probability at least

1−O(mn−η
2κ/2) (κ = min(1, q − 2)),

FDR(B̂) ≤ α +O
(√

ωn + n
1
2+η

2κδµ

)
.

Finite‐sample FDP control under signal condition.

Further assume that ∥µ∗
j − µ∗∥ ≥ C(

√
logn
n + δµ + d

1
2n

−1
2+

κ2
q ). With probability at

least 1−O(mn−
η2κ
2 + ψ

−(1−δ)
m ),

FDP(B̂) ≤ α

[
1 +O

(
snm + n

1
2δµ

)]
,

where snm = n−
(1−η2)κ

2 (logn)
1
2 +mn−

η2κ
2 + (αψm)

−δ/3, η ∈ (0, 1).

Real data analysis

Identification result.

MNIST F‐MNIST CIFAR10

Attack Method FDR TPR Pa FDR TPR Pa FDR TPR Pa

OOD

ByMI‐Filter 6.8 98.1 94.2 7.1 92.8 83.4 5.5 81.7 73.6
ByMI‐Filter+ 6.6 97.2 95.8 6.5 85.0 79.0 5.7 77.1 73.8
ByMI‐GEOM 10.2 97.4 93.4 9.1 92.1 80.8 7.4 76.4 67.2
RMDP‐BH 88.3 99.9 99.8 68.9 98.6 96.8 54.1 84.6 75.0
Krum 27.1 93.8 81.6 36.4 81.7 55.4 52.5 59.4 34.8
FABA 25.2 96.2 89.6 32.2 87.1 69.8 50.6 61.8 45.4
Zeno 26.2 94.8 84.8 35.6 82.8 56.2 54.8 56.5 32.4

IPM

ByMI‐Filter 6.3 99.6 99.6 6.5 99.6 99.6 5.4 100.0 100.0
ByMI‐Filter+ 6.8 99.2 99.2 6.0 97.0 97.0 7.7 100.0 100.0
ByMI‐GEOM 10.2 96.2 96.2 10.4 97.0 97.0 10.0 99.6 99.6
RMDP‐BH 89.2 96.2 96.2 75.3 78.6 78.6 79.6 7.6 7.6
Krum 75.2 31.9 22.6 59.1 52.6 42.2 78.9 26.4 17.2
FABA 88.5 14.8 8.2 72.7 35.1 26.8 96.1 4.9 2.6
Zeno 88.3 15.0 7.8 71.2 37.0 25.8 95.2 6.0 2.2

Table 1. FDR(%), TPR(%) and Pa(%) of the OOD and IPM attacks when ϱ = 0.1. (a = 0.2 in the IPM attack.)

Apply to robust learning task.

We apply ByMI to detect Byzantine machines and use the simple mean
aggregation of the left local gradients to train the model.
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Figure 2. Test accuracy under the IPM attack with the contamination level ϱ = 0.3 when a = 2.
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