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Introduction ByMI Procedure Real data analysis
2 ' | (k) i i |dentification result.
= Distributed system: Samples {Si}i]\il L, Py are evenly stored in m machines 1. Randomiy split the samples oneacni M imto {Dj , }k=1,2 with equal size.
Myq,... My, with N = mn. 2. Obtain a robust mean estimator g(@) based on D§. ) MNIST F-MNIST CIFAR10
= Empirical risk minimization task: ming Z;ﬂ:l ZieMj ((s;;0). 3. Compute score W; = {g1,;(0) —@(9)}T9{g2j(9) —g(0)}, 7 € [m]. Attack Method FDR TPR P, FDR TPR P, FDR TPR P,
4. Choose the threshold L > 0 as ByMI-Filter 6.8 98.1 942 7.1 92.8 834 55 817 7346

" Local gradient averages: g;(0) = n1 Zz‘e/\/lj Vol(s;: 0) € RY.

L:mf{bo. L+#{j: W, < -6} <a} ByMI-Filter+ 6.6 97.2 958 65 850 790 57 771 738
C#w>gve T ByMI-GEOM 102 97.4 934 91 921 808 7.4 764 67.2

* Distributed optimization procedure: 6,1 = 6; —am™" 377, g;(61) OOD RMDP-BH  88.3 99.9 99.8 68.9 98.6 96.8 54.1 84.6 750
FDR level o > 0; Detected Byzantine machines B = { M, : W; > L}. | ' ' - - - : - -

Krum 271 93.8 81.6 364 81.7 554 52.5 594 3458
M., M1 Moo oA FABA 252 962 89.6 32.2 871 69.8 50.6 61.8 454
s Zeno 262 94.8 84.8 354 82.8 562 548 565 324
. Ht . gm—2(9t> ‘@ / (o\o\}.‘i"ﬁ {811(9) oy (9)} threshold L \
Bn1(01) | 6 Master | g0 (W,(8), - Wy (6)} mmb B = {j: W, (0) > L} ByMI-Filter 6.3 99.6 99.6 6.5 99.6 996 54 100.0 100.0
gn(0:) - 0; (821(0), "+, 82m(0)} T S e ] e B ByMI-Filter+ 6.8 99.2 992 60 970 970 7.7 100.0 100.0
0, ] 2:(0) . / ByMI-GEOM 102 96.2 962 104 97.0 97.0 100 996 99.6
0 p IPM  RMDP-BH 892 962 962 753 784 78.6 796 7.6 7.6
¢ | 8(01) 811(6)  821(0)  812(0)  822(0)  84;(0) 82;(6) gim(@)  g2m(0) Krum 752 31.9 22.6 591 52.6 422 789 264 17.2
S g1(6:) S 0, S FABA 885 14.8 82 727 351 268 961 4.9 2.6
M, M, M, p® p@ PP @ | oo p® p® | .. pD @ Zeno 883 150 7.8 71.2 37.0 258 952 60 22
worker M; worker M, worker M; worker M,

. . o . Table 1. FDR(%), TPR(%) and P,(%) of the OOD and IPM attacks when o = 0.1. (@ = 0.2 in the IPM attack.)
Figure 1. Byzantine attacks in distributed learning system.

= ByMl is p-value free and dimension-insensitive. Conditional on {Dy)}, Wi is an

. : thac: ' ' ' Apply to robust learning task.
Byzantine machines: | pm | local machines on which samples are poisoned univariate projection of g;(6) — £(6) and enjoys the symmetric property.
s; ~ Fp rs;e M;eg (Good) | . Normal * Byzantine = We apply ByMlI to detect Byzantine machines and use the simple mean
s; # By ifs; € M, € B (Byzantine). aggregation of the left local gradients to train the model.
= Byzantine robust learning: aggregating {gj} via robust mean estimators (Yin FDP(L) — ByMI-Filter — Filtering — FABA
et al., 2018, /hu et al., 2023) > #{] W < _L} —— ByMI-Filter+ =— Krum —— Zeno
R S S o A 4 A _ J
= A complementary task: the Byzantine machine identification , " . e #j W; > LiVv1
0,0 ©® %0 g0, o° ® o ° ® . . MNIST F-MNIST CIFAR10
> 8 ..... 0. %0095 .0" 5. 8e% P .0t 0 0. X#{] ; Wj > L, € g} 0.62
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Formulate the Identification as Multiple Testing Ve P 0 7, # W< —Lp .
’ #J W;>L,jeg} |
<o X , , 0.78
= Translate the identification into statistical multiple testing: ~ #{J W, .S._ij c G} e
Hy M, €G vs Hy: M €B jeml ~a (by symmetricity of ;). o |
= A mean test framework: ’ ” index v > ) 0.77
Hy < Blgy(60)] = u° v Hy, Elg(6)] #u’ € ), e o §
. . . cale matrix: 2 = . .
with some given 6,. The true center p* can be robustly estimated Sroiect i Slzag_{al i ’hgd J  the fret o for of C 0 oo -l o
= Criterion for multiple testing: false discovery proportion and true positive rojection matrix: £ = vyv; , where vy is the first eigenvector of Cov({gy;(6)}). |
proportion, .
. |BNng _ |BnB| Theoretical Guarantees s
FDP(B) = — ,  IPP(B) = . ' 0.56
1B| V1 5| 0.75
= Conditions: || — p*|| = O(9,,); Lys-Lo-norm equivalence of the gradients;
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* Finite-sample FDR control. Iteration
Failure of traditional Outlier detection via p-values Denote Wn, :2 n_(1_2772)"‘3/2 with some nec <Ov 1/\/5) With probability at least Figure 2. Test accuracy under the IPM attack with the contamination level o = 0.3 when a = 2.
1 — O(mn~""%/2) (k = min(1,q — 2)),
= QOutlier detection methods (Filzmoser et al., 2008; Ro et al., 2015): . [ References
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