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StableMask: Refining Causal Masking in Decoder—only
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Two Issues in Decoder-only Transformers

Disproportional Attention: The softmax function used in self-attention requires all attention scores
to be non-zero and sum up to 1. This often leads to an uneven distribution of attention across
tokens, causing the model to allocate excessive attention to certain tokens like punctuation marks
or initial tokens, which can degrade model performance and stability.
Inability to Encode Absolute Position: Relative Position Encoding (RPE), though beneficial for
extrapolation and transformation invariance, struggles to encode absolute positional information.
This limitation hampers the model’s ability to perform tasks requiring precise position information.
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Pseudo-Attention Scores: The pseudo-
attention scores are designed to decrease
linearly along the sequence, adhering to the
property of disproportionate attention in a
decoder—only model.
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A = Softmax(Agy) © C
= Softmax(A ® C + P) ® C.
Causal Mask Modification: The traditional
causal mask is modified by incorporating
pseudo-attention scores. This allows for the
encoding of absolute positional information.
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Experiments

Addressing Two Issues: We calculated attention probability ratios for the first token and
various token types. The results showed that StableMask significantly reduces abnormal
attention distribution, particularly for initial tokens and punctuation marks. Models with
StableMask displayed a significant reduction in attention values for these tokens,
confirming that StableMask effectively mitigates the issue of disproportionate attention.
Also, performance of StableMask was compared with various Position Encoding
approaches, including RPE methods like ALiBi and RoPE. StableMask demonstrated
superior capability in encoding absolute positional information, effectively addressing
the limitations of RPE
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Performance on Various Architectures and Tasks: Models with StableMask consistently
achieved better perplexity (PPL) scores across different architectures and sizes,

showing improved language modeling performance.On large—scale datasets like The Pile,
a 1.4B parameter model with StableMask outperformed standard models, demonstrating
better scaling with the number of tokens.

Pre—trained models with StableMask showed improved performance on downstream
tasks such as LAMBADA, PIQA, ARC-Easy, ARC-Challenge, OpenbookQA, and
Winogrande. This suggests that StableMask enhances both pretraining language
understanding and downstream task effectiveness.



