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Motivation

Contextual Inverse Optimization (CIO) is inferring unknown parameters of
an optimization problem from known solutions.
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Figure: General Framework

Applications:

e [WSC23| Energy-cost aware scheduling: Use weather data to predict
future energy prices to schedule jobs efficiently.

® [WSC23] Inverse reinforcement learning.
® [WDT19] Recommendation Systems.
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Problem Overview
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® Dataset : D = {z,x* :N:1 where z; € R? is the input and x: € R™M

1
is the corresponding optimal decision.

® Prediction Model : fy(z) : z — c.

® Linear Program (LP): x(c) :=argmin(c,x) s.t Ax =b, x > 0.
X

® Objective © Learn § s.t. Vi € [N]; x(fp(zi)) = x*.
(c)

® Key challenge : Since x(c) — c is not unique, agc is either 0 or oo.
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]
TL:DR: Contributions

End-to-end training
Using the KKT conditions for LPs and make connections from ClO to
feasibility and ERM

Theoretical Guarantees
Our method comes with theoretical guarantees without the extra
assumption of non-degeneracy or no-noise.
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-
Key ldea: Reduction to Feasibility

Define C s.t. Ve € C, x(c) = x*.
Using KKT [KT51] optimality conditions:

C={c|3\vst vTA+A—c=0,x"-A=0,1>0} (1)

For linear model § € R9*m,

F={c|30st. c=z0}. (2)

Both C and F are convex.
. Find a c € CNF (known as convex feasibility).
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-
Algorithm and Challenges

Alternating Projections (POCS)
® Requires projection onto sets C and F alternatively.

e Converge to a pointin CNF if CNF # (). Else to a point in F
(closest to C).

® Projecting on C involves solving a QP.

® Projecting on F involves solving a regression problem.

Challenges:
x Exact projection to F is expensive for large dataset.
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|
Reduction to Empirical Risk Minimization (ERM)

Consider the loss function:
1 N
— ; N oAll2
(OBFr P ALORL ()

Properties of h(f)
® For a linear model fy, h is 1-smooth, convex function.

e Not necessarily strongly convex but satisfies PL [Pol64] condition.

Convergence
e Can use stochastic gradient descent with O(1) iteration cost.

® For a linear model fy, when C N F # (), SGD converges to CN F at
linear rate.
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Sub-optimality and Generalisation

Sub-optimality of decision quality (with ¢y = Pc(fy(z))

o/ o .
[0, (2.x)) = <m X(€) — x > (4)

Relation to h(6)
r(6,(z.x") < 0 (Vmh(d)) (5)

Sub-optimality for unseen-instances

Elayep B [EIT O, (2] = O (Vi fexp(~T]?)
(when C N F #£0)

v
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Experiment Details: Dataset

Label
10 -0
10 -0
00 -1

k x k indicator matrix
of shortest path

Figure: Warcraft Shortest Path [VPM*19]

Saurabh Mishra Inverse Optimization to Feasibility to ERM 9/13



Experiment Results
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Conclusion

® Reduction the problem of CIO to Feasibility
Further, presented the reduction to ERM

® Presented the convergence guarantees and generalization guarantees
Paper: https://arxiv.org/abs/2402.17890

Contact: skm24@sfu.ca, vaswani.sharan@gmail.com
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