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Learning to Scale Logits for Temperature-Conditional GFlowNets

We propose a simple technique to adjust the SoftMax logit temperature for temperature-conditional GFlowNets and demonstrate its

useful applications in drug discovery.
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1. Preliminary
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1.1 What are GFlowNets?
GFlowNets aim to convert a non-negative reward function R(x) into a

generative policy: p(z) oc R”(z) with inverse temperature 3 which
determine steepness of target distribution.

1.2 Temperature Conditional GFlowNets
Our aim is to learn the temperature-conditional GFlowNets

(Temp-GFN):
p(x|B) o< R (x)

The major benefit of temperature-conditional GFlowNets is the
controllability of GFlowNets’ exploration and exploitation through
adjusting temperature.

2. Research Objective

= Temp-GFN training is challenging due to varying target distribution
steepness.

= Representing various temperature distributions can be numerically
difficult and unstable.

= Incorporating additional inductive bias into SoftMax
temperature may stabilize Temp-GFN training.

= Training GFN at low temperatures (steep distributions) is
challenging.

= Generalizing to steep, high-reward regions is difficult with limited
observations.

= Training at various high temperatures (low ) and querying at
low temperatures (high 5) may generalize better than fixed low
temperature training.

3. Methodology: Logit-GFN

3.1 Overall Idea
Introducing the Logit-Scaling Net: a novel auxiliary network that

optimally scales the SoftMax temperature of policy network logits,
enhancing Temp-GFN training and enabling effective generalization
across various temperature distributions.
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3.2 Logit Scaling
Objective: Facilitate training of temperature-conditional GFlowNets,

p(z|B) o< R(x)”, over varying inverse temperatures j3.

Proposed Logit Scaling Temperature Conditional GFN
(Logit-GFN)

Logit-Scaling Trick: Uses a skip connection to adjust the SoftMax
temperature T’ of Pr logits based on 5. Defined as:

: exp (ay(s,s")/ fo(F))
P 3,0) = 1
A O g expla(s. ) o) o
" ay(s, s’): Neural net independent of 3

* fy(8): Logit-scaling net transforming 3 into SoftMax temperature T

Key Point: Logit-scaling is agnostic to the policy network’s form,
including layer-conditioning networks.

(Note that the logit-scaling can be applied to layer-conditioning net-
works (where « is also dependent on ), ensuring their full expres-
sive capacity is maintained across different temperature regimes.)

3.3 Training Objective
Training Procedure. We minimize the trajectory balance (TB) loss

with a replay buffer D, but train GFlowNets over multiple 5 ~ Piain(5):
(Iog Zo(B) T PF(’)>2
I R(x)” H?:1 Pg(+) )
where PF() — PF(St|St_1; 6, 9) and PB() — PB(St—l‘St; 5, (9)

L(0;D) = , (2)

<EPtrain (6) <EPD(T)

Implementation. We condition the partition function Zy(5) on 5 and
use DNNs fy, Zy to map scalars, minimizing parameter overhead.

3.4 Online discovery algorithm with Logit-GFN
Objective. Discover diverse, high-reward candidates + € X (e.g.,

molecules with high binding affinity) focusing on top rewards,
diversity, and modes.

Method. Enhance GFlowNets exploration by sampling multiple 5

values, forming a diverse rezglay buffer D:
—DU{n,....,7u}t

Tly - e TM ™ /BPF(T‘ﬁ)dPexp(ﬁ)°

(3)
(4)

Dynamic control policy Pexp(3) varies exploration range.

Algorithm 1 Scientific Discovery with Temperature-Conditional GFlowNets
1: SetD «+ )

> Initialize dataset.
> Training 'I" rounds
> Sample temperatures from exploration query prior.

4 form=1,.... M do

5: Tm ~ Prp (7|8 = Bm; 0) > Sample trajectories from Logit-GFN.
6: D+ DU {mm}

7 end for

8: fork=1,... Kdo > Training K epochs per each training rounds
9: Use ADAM for gradually minimizing £(6; D).

10: end for

11: end for

12: Output: D

4. Experiments

4.1 Tasks
We evaluate temperature-conditional GFlowNets on a toy grid world

and four biochemical tasks: QM9, TFBind8, sEH, and RNA-binding.

: : The agent can move forward but not backward to reach
a high-reward goal state. With multiple high-reward modes, the
agent aims to cover all modes in the grid space.

- . Generation of molecular graphs by sequentially adding atom
components. The reward function is based on the Homo-Lumo gap.

- : Generation of DNA sequences by bidirectional token
addition. The reward function measures binding activity with
human transcription factors.

: : Generation of molecular graphs by sequentially adding
predefined fragment components. The reward function is specified
by enzymatic activity metrics.

- : Generation of RNA sequences by bidirectional token
addition. The reward function is based on binding activity with
human transcription factors.

4.2 Training Stability
We assess the training stability of temperature-conditional

GFlowNets.
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4.3 Offline Generalization
We examine the controllability of temperature-conditional

GFlowNets, i.e., p(z|3) o< R(z)”, in offline model-based optimization.
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4.4 Online Mode-Seeking
We validate the effectiveness of temperature-conditional GFlowNets

in solving online mode-seeking problems.
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