
Learning to Scale Logits for Temperature-Conditional GFlowNets
Wepropose a simple technique to adjust the SoftMax logit temperature for temperature-conditional GFlowNets and demonstrate its
useful applications in drug discovery.
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1.1 What are GFlowNets?
GFlowNets aim to convert a non-negative reward functionR(x) into a
generative policy: p(x) ∝ Rβ(x)with inverse temperature β which
determine steepness of target distribution.

1.2 Temperature Conditional GFlowNets
Our aim is to learn the temperature-conditional GFlowNets
(Temp-GFN):

p(x|β) ∝ Rβ(x)

The major benefit of temperature-conditional GFlowNets is the
controllability of GFlowNets’ exploration and exploitation through
adjusting temperature.

2. Research Objective
Research Scope 1: Training stability of Temp-GFN
• Temp-GFN training is challenging due to varying target distribution
steepness.

• Representing various temperature distributions can be numerically
difficult and unstable.

• Incorporating additional inductive bias into SoftMax
temperaturemay stabilize Temp-GFN training.

Research Scope 2: Usefulness of Temp-GFN
• Training GFN at low temperatures (steep distributions) is
challenging.

• Generalizing to steep, high-reward regions is difficult with limited
observations.

• Training at various high temperatures (low β) and querying at
low temperatures (high β) may generalize better than fixed low
temperature training.

3. Methodology: Logit-GFN
3.1 Overall Idea
Introducing the Logit-Scaling Net: a novel auxiliary network that
optimally scales the SoftMax temperature of policy network logits,
enhancing Temp-GFN training and enabling effective generalization
across various temperature distributions.
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3.2 Logit Scaling
Objective: Facilitate training of temperature-conditional GFlowNets,
p(x|β) ∝ R(x)β, over varying inverse temperatures β.

Logit-Scaling Trick: Uses a skip connection to adjust the SoftMax
temperature T of PF logits based on β. Defined as:

PF (s
′|s; β, θ) := exp (αθ(s, s

′)/fθ(β))∑
s′′∈Ch(s) exp(αθ(s, s′′)/fθ(β))

(1)

• αθ(s, s
′): Neural net independent of β

• fθ(β): Logit-scaling net transforming β into SoftMax temperature T

Key Point: Logit-scaling is agnostic to the policy network’s form,
including layer-conditioning networks.

(Note that the logit-scaling can be applied to layer-conditioning net-
works (where α is also dependent on β), ensuring their full expres-
sive capacity is maintained across different temperature regimes.)
3.3 Training Objective
Training Procedure. Weminimize the trajectory balance (TB) loss
with a replay bufferD, but train GFlowNets over multiple β ∼ Ptrain(β):

L(θ;D) = EPtrain(β)EPD(τ )

[(
log

Zθ(β)
∏n

t=1PF (·)
R(x)β

∏n
t=1PB(·)

)2
]
, (2)

where PF (·) = PF (st|st−1; β, θ) and PB(·) = PB(st−1|st; β, θ).

Implementation. We condition the partition function Zθ(β) on β and
use DNNs fθ, Zθ to map scalars, minimizing parameter overhead.

3.4 Online discovery algorithmwith Logit-GFN
Objective. Discover diverse, high-reward candidates x ∈ X (e.g.,
molecules with high binding affinity) focusing on top rewards,
diversity, and modes.

Method. Enhance GFlowNets exploration by sampling multiple β
values, forming a diverse replay bufferD:

D ← D ∪ {τ1, . . . , τM} (3)

τ1, . . . , τM ∼
∫
β

PF (τ |β)dPexp(β). (4)

Dynamic control policy Pexp(β) varies exploration range.

4. Experiments
4.1 Tasks
We evaluate temperature-conditional GFlowNets on a toy grid world
and four biochemical tasks: QM9, TFBind8, sEH, and RNA-binding.

• Gridworld: The agent can move forward but not backward to reach
a high-reward goal state. With multiple high-reward modes, the
agent aims to cover all modes in the grid space.

• QM9: Generation of molecular graphs by sequentially adding atom
components. The reward function is based on the Homo-Lumo gap.

• TFBind8: Generation of DNA sequences by bidirectional token
addition. The reward function measures binding activity with
human transcription factors.

• sEH: Generation of molecular graphs by sequentially adding
predefined fragment components. The reward function is specified
by enzymatic activity metrics.

• RNA-binding: Generation of RNA sequences by bidirectional token
addition. The reward function is based on binding activity with
human transcription factors.

4.2 Training Stability
We assess the training stability of temperature-conditional
GFlowNets.

4.3 Offline Generalization
We examine the controllability of temperature-conditional
GFlowNets, i.e., p(x|β) ∝ R(x)β, in offline model-based optimization.

4.4 OnlineMode-Seeking
We validate the effectiveness of temperature-conditional GFlowNets
in solving online mode-seeking problems.

Toy task: Grid world

Biochemical discovery tasks
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