

Learning to Scale Logits for Temperature-Conditional GFlowNets

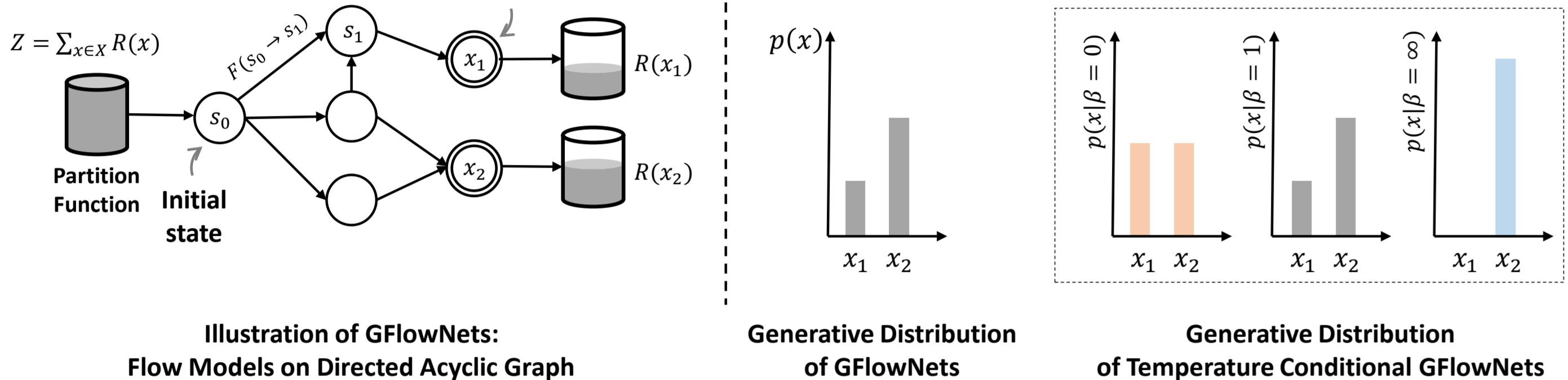
We propose a simple technique to adjust the SoftMax logit temperature for temperature-conditional GFlowNets and demonstrate its useful applications in drug discovery.

Minsu Kim^{1,2,*}, Joohwan Ko^{1,*}, Taeyoung Yun^{1,*} Dinghuai Zhang², Ling Pan³

Woo Chang Kim¹, Jinkyoo Park¹, Emmanuel Bengio⁴, Yoshua Bengio²

¹ KAIST ² Mila ³ HKUST ⁴ Valence Labs * Equal contribution

1. Preliminary



1.1 What are GFlowNets?

GFlowNets aim to convert a non-negative reward function $R(x)$ into a generative policy: $p(x) \propto R^\beta(x)$ with inverse temperature β which determine steepness of target distribution.

1.2 Temperature Conditional GFlowNets

Our aim is to learn the temperature-conditional GFlowNets (Temp-GFN):

$$p(x|\beta) \propto R^\beta(x)$$

The major benefit of temperature-conditional GFlowNets is the controllability of GFlowNets' exploration and exploitation through adjusting temperature.

2. Research Objective

Research Scope 1: Training stability of Temp-GFN

- Temp-GFN training is challenging due to varying target distribution steepness.
- Representing various temperature distributions can be numerically difficult and unstable.
- **Incorporating additional inductive bias into SoftMax temperature may stabilize Temp-GFN training.**

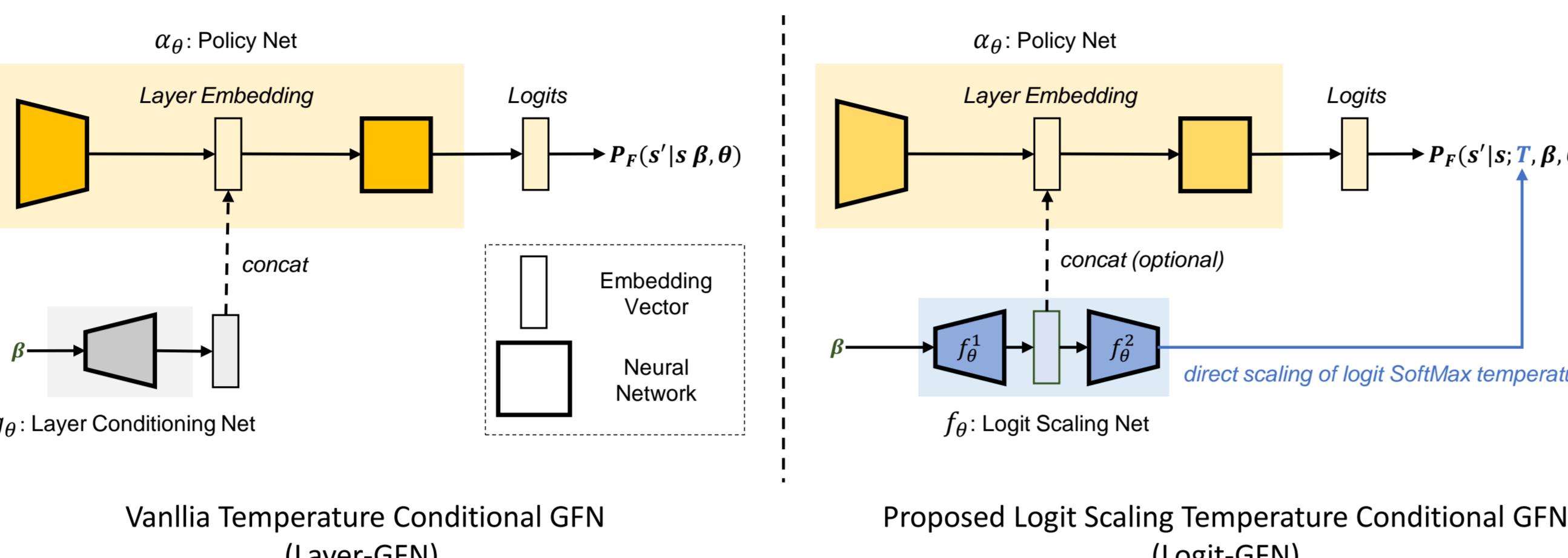
Research Scope 2: Usefulness of Temp-GFN

- Training GFN at low temperatures (steep distributions) is challenging.
- Generalizing to steep, high-reward regions is difficult with limited observations.
- **Training at various high temperatures (low β) and querying at low temperatures (high β) may generalize better than fixed low temperature training.**

3. Methodology: Logit-GFN

3.1 Overall Idea

Introducing the Logit-Scaling Net: a novel auxiliary network that optimally scales the SoftMax temperature of policy network logits, enhancing Temp-GFN training and enabling effective generalization across various temperature distributions.



3.2 Logit Scaling

Objective: Facilitate training of temperature-conditional GFlowNets, $p(x|\beta) \propto R(x)^\beta$, over varying inverse temperatures β .

Logit-Scale Trick: Uses a skip connection to adjust the SoftMax temperature T of P_F logits based on β . Defined as:

$$P_F(s'|s; \beta, \theta) := \frac{\exp(\alpha_\theta(s, s')/f_\theta(\beta))}{\sum_{s'' \in \text{Ch}(s)} \exp(\alpha_\theta(s, s'')/f_\theta(\beta))} \quad (1)$$

- $\alpha_\theta(s, s')$: Neural net independent of β
- $f_\theta(\beta)$: Logit-scaling net transforming β into SoftMax temperature T

Key Point: Logit-scaling is agnostic to the policy network's form, including layer-conditioning networks.

(Note that the logit-scaling can be applied to layer-conditioning networks (where α is also dependent on β), ensuring their **full expressive capacity** is maintained across different temperature regimes.)

3.3 Training Objective

Training Procedure. We minimize the trajectory balance (TB) loss with a replay buffer \mathcal{D} , but train GFlowNets over multiple $\beta \sim P_{\text{train}}(\beta)$:

$$\mathcal{L}(\theta; \mathcal{D}) = \mathbb{E}_{P_{\text{train}}(\beta)} \mathbb{E}_{P_{\mathcal{D}}(\tau)} \left[\left(\log \frac{Z_\theta(\beta) \prod_{t=1}^n P_F(\cdot)}{R(x)^\beta \prod_{t=1}^n P_B(\cdot)} \right)^2 \right], \quad (2)$$

where $P_F(\cdot) = P_F(s_t|s_{t-1}; \beta, \theta)$ and $P_B(\cdot) = P_B(s_{t-1}|s_t; \beta, \theta)$.

Implementation. We condition the partition function $Z_\theta(\beta)$ on β and use DNNs f_θ, Z_θ to map scalars, minimizing parameter overhead.

3.4 Online discovery algorithm with Logit-GFN

Objective. Discover diverse, high-reward candidates $x \in \mathcal{X}$ (e.g., molecules with high binding affinity) focusing on top rewards, diversity, and modes.

Method. Enhance GFlowNets exploration by sampling multiple β values, forming a diverse replay buffer \mathcal{D} :

$$\begin{aligned} \mathcal{D} &\leftarrow \mathcal{D} \cup \{\tau_1, \dots, \tau_M\} \\ \tau_1, \dots, \tau_M &\sim \int_{\beta} P_F(\tau|\beta) dP_{\text{exp}}(\beta). \end{aligned} \quad (3) \quad (4)$$

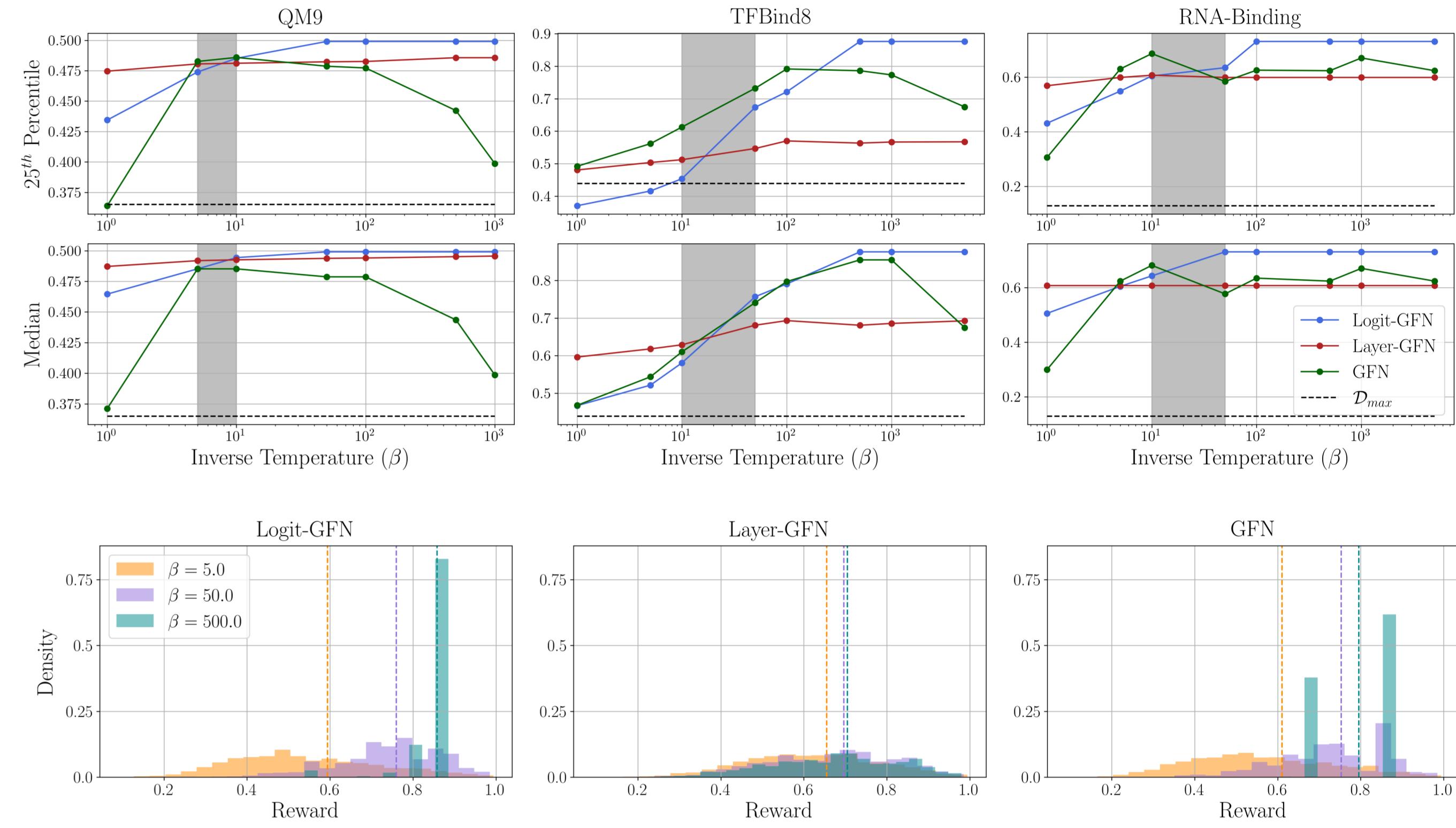
Dynamic control policy $P_{\text{exp}}(\beta)$ varies exploration range.

Algorithm 1 Scientific Discovery with Temperature-Conditional GFlowNets

```

1: Set  $\mathcal{D} \leftarrow \emptyset$ 
2: for  $t = 1, \dots, T$  do
3:    $\beta_1, \dots, \beta_M \sim P_{\text{exp}}(\beta)$  ▷ Initialize dataset.
4:   for  $m = 1, \dots, M$  do
5:      $\tau_m \sim P_F(\tau|\beta = \beta_m; \theta)$  ▷ Training  $T$  rounds
6:      $\mathcal{D} \leftarrow \mathcal{D} \cup \{\tau_m\}$  ▷ Sample trajectories from Logit-GFN.
7:   end for
8:   for  $k = 1, \dots, K$  do
9:     Use ADAM for gradually minimizing  $\mathcal{L}(\theta; \mathcal{D})$ . ▷ Training  $K$  epochs per each training rounds
10:  end for
11: end for
12: end for
13: Output:  $\mathcal{D}$ 

```



4. Experiments

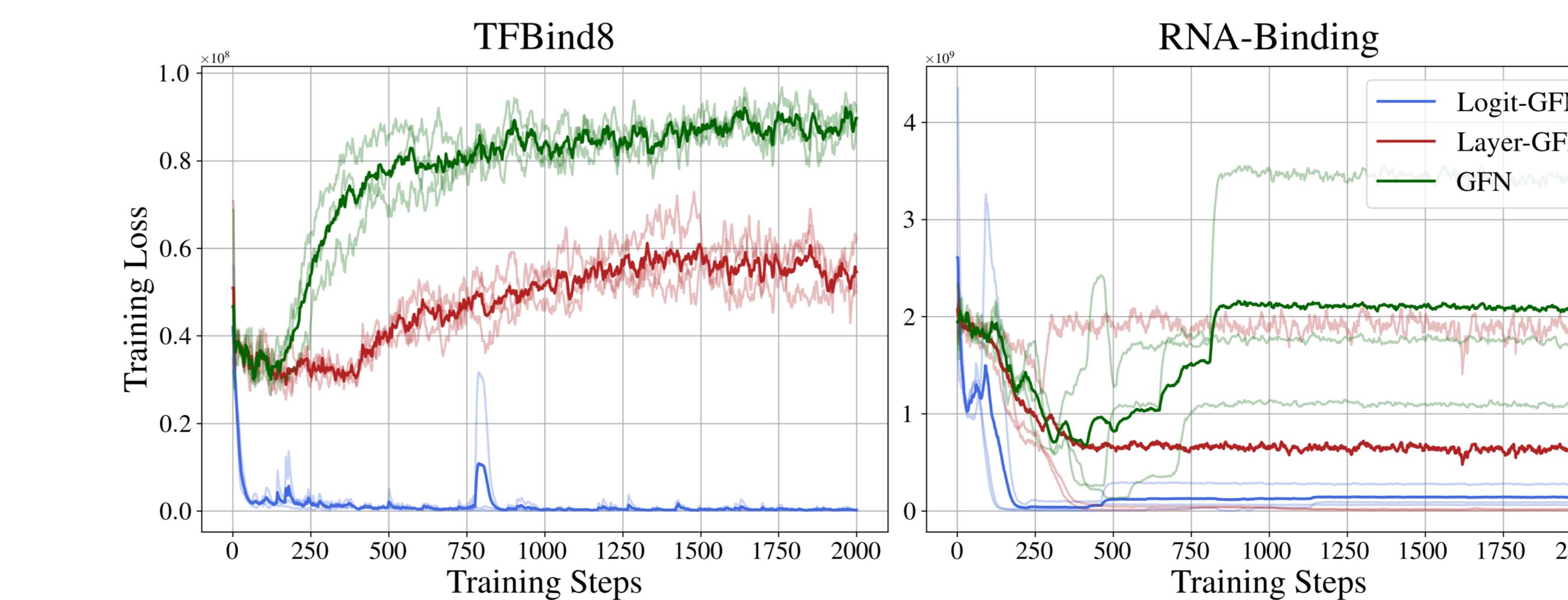
4.1 Tasks

We evaluate temperature-conditional GFlowNets on a toy grid world and four biochemical tasks: QM9, TFBind8, sEH, and RNA-binding.

- **Grid world:** The agent can move forward but not backward to reach a high-reward goal state. With multiple high-reward modes, the agent aims to cover all modes in the grid space.
- **QM9:** Generation of molecular graphs by sequentially adding atom components. The reward function is based on the Homo-Lumo gap.
- **TFBind8:** Generation of DNA sequences by bidirectional token addition. The reward function measures binding activity with human transcription factors.
- **sEH:** Generation of molecular graphs by sequentially adding predefined fragment components. The reward function is specified by enzymatic activity metrics.
- **RNA-binding:** Generation of RNA sequences by bidirectional token addition. The reward function is based on binding activity with human transcription factors.

4.2 Training Stability

We assess the training stability of temperature-conditional GFlowNets.

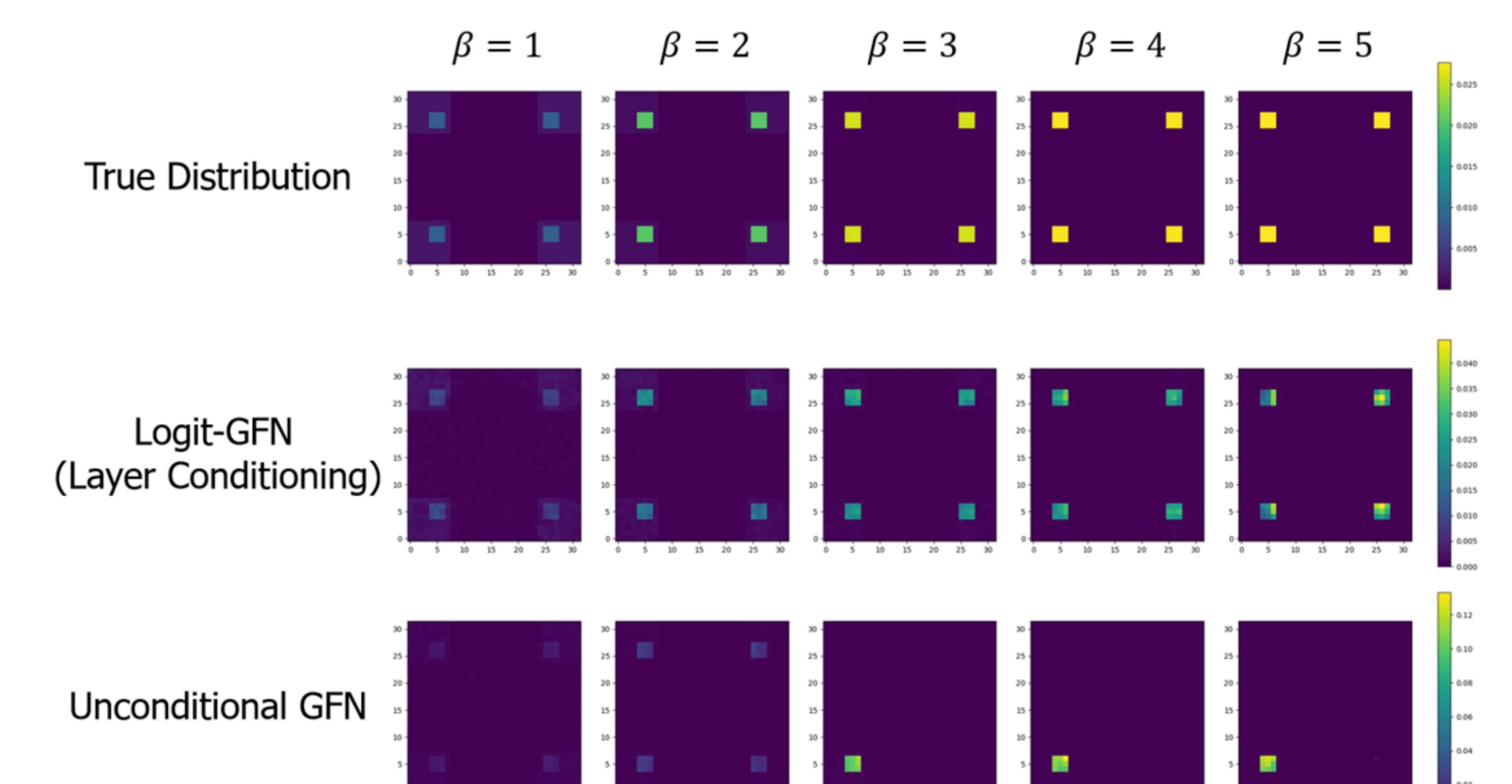


4.3 Offline Generalization

We examine the controllability of temperature-conditional GFlowNets, i.e., $p(x|\beta) \propto R(x)^\beta$, in offline model-based optimization.

4.4 Online Mode-Seeking
We validate the effectiveness of temperature-conditional GFlowNets in solving online mode-seeking problems.

Toy task: Grid world



Biochemical discovery tasks

