Learning in Feature Spaces via Coupled Covariances: Asymmetric Kernel SVD and Nyström method

Qinghua Tao<sup>1\*</sup>, Francesco Tonin<sup>2\*</sup>, Alex Lambert<sup>1</sup>, Yingyi Chen<sup>1</sup>, Panagiotis Patrinos<sup>1</sup>, and Johan A.K. Suykens<sup>1</sup>

<sup>1</sup>ESAT-STADIUS, KU Leuven, Belgium <sup>2</sup>LIONS, EPFL, Switzerland (most work done at ESAT-STADIUS, KU Leuven) \*Equal contribution ginghua.tao@esat.kuleuven.be, francesco.tonin@epfl.ch

ICML 2024





European Research Council

# Motivation

Given  $A \in \mathbb{R}^{n \times m}$ , it can be seen as an array w.r.t. either rows or columns:

• 
$$\mathcal{X} = \{A[i, :] \triangleq x_i\}_{i=1}^n$$

• 
$$\mathcal{Z} = \{A[:,j] \triangleq z_j\}_{j=1}^m$$

**SVD** gives two sets of linear features for both  $\mathcal{X}$  and  $\mathcal{Z}$ .

**KPCA** provides only <u>one set</u> of features to rows  $\mathcal{X}$ .



Figure: Example of asymmetric similarity.

- SVD can process any rectangular matrix, but lacks flexibility for nonlinearity.
- Classical kernel methods only deal with symmetric kernels.

## Background: KSVD with LSSVMs Setups

Given two sets of samples  $\{x_i \in \mathcal{X}\}_{i=1}^n, \{z_j \in \mathcal{Z}\}_{j=1}^m$  and feature mappings  $\phi \colon \mathcal{X} \to \mathcal{H}, \psi \colon \mathcal{Z} \to \mathcal{H}$ , the primal form of KSVD is given by

$$\max_{\substack{\boldsymbol{w},\boldsymbol{v},\boldsymbol{e},\boldsymbol{r}\\\boldsymbol{w},\boldsymbol{v},\boldsymbol{e},\boldsymbol{r}}} - \boldsymbol{v}^{\top} \boldsymbol{w} + \frac{1}{2\lambda} \sum_{i=1}^{n} \boldsymbol{e}_{i}^{2} + \frac{1}{2\lambda} \sum_{j=1}^{m} r_{j}^{2}$$
  
s.t. 
$$\boldsymbol{e}_{i} = \boldsymbol{w}^{\top} \boldsymbol{\phi}(\boldsymbol{x}_{i}), \ i = 1, \dots, n,$$
$$\boldsymbol{r}_{j} = \boldsymbol{v}^{\top} \boldsymbol{\psi}(\boldsymbol{z}_{j}), \ j = 1, \dots, m,$$

### KSVD

The KKT conditions of KSVD leads to the shifted eigenvalue problem [1]:

$$G^{\top}B_{\phi}=B_{\psi}\Lambda, \quad GB_{\psi}=B_{\phi}\Lambda$$

where  $G = [\frac{1}{\sqrt{nm}} \langle \phi(x_i), \psi(z_j) \rangle] \in \mathbb{R}^{n \times m}$  is an asymmetric kernel.

According to Lanczos' decomposition theorem [2], KSVD above can be solved by taking for  $B_{\phi}$ ,  $B_{\psi}$  the top-*r* left and right singular vectors of the matrix *G*.

[1] Suykens, J. A. SVD revisited: A new variational principle, compatible feature maps and nonlinear extensions. Applied and Computational Harmonic Analysis, 2016.

[2] Lanczos, C. Linear systems in self-adjoint form. The American Mathematical Monthly, 1958.

#### • Coupled Covariance Eigenproblem (CCE)

- a new learning paradigm through covariance operators, complementing the kernel-based formulations for KSVD
- allowing infinite-dimensional feature maps in KSVD
- Asymmetric Nyström
  - finite-sample approximation to integral equations w.r.t. asymmetric kernels and singular functions
  - faster computation for KSVD with large-scale kernels.

# Coupled Covariance Eigenproblem (CCE)

In CCE, the goal is to learn a pair of *r* directions in the feature space  $\mathcal{H}$  solving a coupled eigenvalues problem. We define

the sough-after directions in vectors of

$$W_{\phi} = [w_1^{\phi}, \ldots, w_r^{\phi}] \in \mathcal{H}^r, \quad W_{\psi} = [w_1^{\psi}, \ldots, w_r^{\psi}] \in \mathcal{H}^r,$$

the empirical covariance operators

$$\Sigma_{\phi} = rac{1}{n} \sum_{i=1}^n \phi(x_i) \phi(x_i)^*, \quad \Sigma_{\psi} = rac{1}{m} \sum_{j=1}^m \psi(z_j) \psi(z_j)^*.$$

### Definition (CCE)

Find  $W_{\phi} \in \mathcal{H}^{r}, W_{\psi} \in \mathcal{H}^{r}$  such that

$$\Sigma_{\phi} W_{\psi} = \Lambda W_{\phi}, \qquad \qquad \Sigma_{\psi} W_{\phi} = \Lambda W_{\psi},$$

for some diagonal matrix  $\Lambda \in \mathbb{R}^{r \times r}$  with positive values.

## Equivalence between CCE and KSVD

Given that a solution to the CCE exists, it holds that all directions  $\{w_l^{\phi}\}_{l=1}^r$ ,  $\{w_l^{\psi}\}_{l=1}^r$  lie respectively in Span  $\{\phi(x_i)\}_{i=1}^n$ , Span  $\{\psi(z_j)\}_{j=1}^m$ :

$$w_l^{\phi} = \sum_{i=1}^n b_{il}^{\phi} \phi(x_i), \qquad w_l^{\psi} = \sum_{j=1}^m b_{jl}^{\psi} \psi(z_j)$$

where  $B_{\phi} \in \mathbb{R}^{n \times r}$  and  $B_{\psi} \in \mathbb{R}^{m \times r}$  denote the matrices of coefficients.

2 Let  $\Gamma_{\phi}, \Gamma_{\psi}$  be linear operators on  $W \in \mathcal{H}'$  by  $[\Gamma_{\phi}W]_{il} = \langle \phi(x_i), w_l \rangle / \sqrt{n}$ ,  $[\Gamma_{\psi}W]_{jl} = \langle \psi(z_j), w_l \rangle / \sqrt{m}$ , and  $G = [\langle \phi(x_i), \psi(z_j) \rangle / \sqrt{nm}] \in \mathbb{R}^{n \times m}$ . We have  $W_{\phi} = \Gamma_{\phi}^* B_{\phi}, \qquad W_{\psi} = \Gamma_{\psi}^* B_{\psi}$  $\Gamma_{\psi}\Gamma_{\phi}^* B_{\phi} = G^{\top} B_{\phi}, \qquad \Gamma_{\phi}\Gamma_{\psi}^* B_{\psi} = G B_{\psi}$ 

#### Equivalence between the solutions in CCE and KSVD

Directions  $W_{\phi}$ ,  $W_{\psi}$  are solution to CCE if and only if  $B_{\phi}$ ,  $B_{\psi}$  are solution to:

$$G^{\top}GB_{\psi} = G^{\top}B_{\phi}\Lambda, \qquad \qquad GG^{\top}B_{\phi} = GB_{\psi}\Lambda,$$

6/8

Let  $B_{\phi}^{svd}$  (resp.  $B_{\psi}^{svd}$ ) be top-r left (resp. right) singular vectors of G from the KSVD. Then  $W_{\phi} = \Gamma_{\phi}^* B_{\phi}^{svd}$ ,  $W_{\psi} = \Gamma_{\psi}^* B_{\psi}^{svd}$  is a solution to the CCE.

## Asymmetric Nyström Method

With an asymmetric kernel  $\kappa(x, z)$ ,  $u_s(x)$  and  $v_s(z)$  satisfying

$$\lambda_{s}u_{s}(x) = \int_{\mathcal{D}_{z}} \kappa(x, z)v_{s}(z) p_{z}(z)dz,$$
  
$$\lambda_{s}v_{s}(z) = \int_{\mathcal{D}_{x}} \kappa(x, z)u_{s}(x) p_{x}(x)dx$$

are called a pair of **adjoint eigenfunctions** (singular functions) corresponding to the singular values  $\lambda_s$  with  $\lambda_1 \ge \lambda_2 \ge \ldots \ge 0$ .

Through finite-sample approximation, the asymmetric Nyström gives:

$$\begin{split} \tilde{u}_{s}^{(N,M)} &= (\sqrt{\sqrt{mn}I_{\lambda_{s}}}/\lambda_{s}^{(n,m)})G_{N,m}v_{s}^{(n,m)}, \\ \tilde{v}_{s}^{(N,M)} &= (\sqrt{\sqrt{mn}I_{\lambda_{s}}}/\lambda_{s}^{(n,m)})G_{n,M}^{\top}u_{s}^{(n,m)}, \end{split}$$

where  $\lambda_s^{(n,m)}$ ,  $u_s^{(n,m)}$ , and  $v_s^{(n,m)}$  are from the SVD on an  $n \times m$  (smaller) submatrix sampled from  $G \in \mathbb{R}^{N \times M}$ .

[3] Williams, C. and Seeger, M. Using the Nyström method to speed up kernel machines. NeurIPS 2000.

## Conclusion

- A new asymmetric learning paradigm with CCE, allowing infinite dimensional maps and providing covariance-based perspective for KSVD.
- Formal derivations to **asymmetric Nyström** method by starting from integral equations related to the continuous analogue of SVD.
- Extensive experiments on feature learning with asymmetric kernels.

| Dataset     | F1 Score (↑) | PCA   | KPCA  | SVD   | KSVD  | DeepW | HOPE  | DiGAE |
|-------------|--------------|-------|-------|-------|-------|-------|-------|-------|
| Cora        | Micro        | 0.757 | 0.771 | 0.776 | 0.792 | 0.741 | 0.750 | 0.783 |
|             | Macro        | 0.751 | 0.767 | 0.770 | 0.784 | 0.736 | 0.473 | 0.776 |
| Citeseer    | Micro        | 0.648 | 0.666 | 0.667 | 0.678 | 0.624 | 0.642 | 0.663 |
|             | Macro        | 0.611 | 0.635 | 0.632 | 0.640 | 0.587 | 0.607 | 0.627 |
| Pubmed      | Micro        | 0.765 | 0.754 | 0.766 | 0.773 | 0.759 | 0.771 | 0.781 |
|             | Macro        | 0.736 | 0.715 | 0.738 | 0.743 | 0.737 | 0.741 | 0.749 |
| TwitchPT    | Micro        | 0.681 | 0.681 | 0.694 | 0.712 | 0.637 | 0.685 | 0.633 |
|             | Macro        | 0.517 | 0.531 | 0.543 | 0.596 | 0.589 | 0.568 | 0.593 |
| BlogCatalog | Micro        | 0.648 | 0.663 | 0.687 | 0.710 | 0.688 | 0.704 | 0.697 |
|             | Macro        | 0.643 | 0.659 | 0.673 | 0.703 | 0.679 | 0.697 | 0.690 |

KSVD outperforms KPCA and even the methods specified for graphs

| Method | AC   | ACM  |      | DBLP  |      | Pubmed |      | Wiki |  |
|--------|------|------|------|-------|------|--------|------|------|--|
|        | NMI  | Coh  | NMI  | Coh   | NMI  | Coh    | NMI  | Coh  |  |
| SVD    | 0.58 | 0.21 | 0.09 | -0.06 | 0.31 | 0.42   | 0.39 | 0.42 |  |
| KPCA   | 0.59 | 0.28 | 0.26 | 0.17  | 0.29 | 0.51   | 0.46 | 0.57 |  |
| KSVD   | 0.68 | 0.32 | 0.28 | 0.21  | 0.33 | 0.54   | 0.48 | 0.64 |  |
| BCOT   | 0.38 | 0.27 | 0.27 | 0.22  | 0.16 | 0.54   | 0.48 | 0.64 |  |
| EBC    | 0.62 | 0.20 | 0.15 | 0.21  | 0.19 | 0.56   | 0.47 | 0.63 |  |

KSVD is comparable to the methods specified for bi-clustering

| Task   | Ν     | Time (s) |       |           |       |         |  |
|--------|-------|----------|-------|-----------|-------|---------|--|
|        |       | TSVD     | RSVD  | Sym. Nys. | Ours  | Speedup |  |
| Cora   | 2708  | 0.841    | 0.274 | 0.673     | 0.160 | 1.71×   |  |
| PubMed | 19717 | 9.223    | 4.577 | 44.914    | 0.141 | 32.51×  |  |



0.7



 Asymmetric Nyström significantly speed up KSVD, and outperform symmetric Nyström with the same number of samplings.