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@ SVD can process any rectangular matrix, but lacks flexibility for nonlinearity.

@ Classical kernel methods only deal with symmetric kernels.
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Background: KSVD with LSSVMs Setups

Given two sets of samples {x; € X}_y,{z € Z}]2; and feature mappings
¢: X = H,v: Z — H, the primal form of KSVD is given by

1 n 2 1 m 2

TR YW g 2O gy 2y
st. e =w'¢(x),i=1,...,n
n=viy(z), j=1,...,m,

The KKT conditions of KSVD leads to the shifted eigenvalue problem [1]:
G'B, = By,A, GB, = ByA

1
NG

where G = [— (¢(x)), ¥(2)))] € R™" is an asymmetric kernel.

According to Lanczos’ decomposition theorem [2], KSVD above can be solved by
taking for By, By, the top-r left and right singular vectors of the matrix G.

[1] Suykens, J. A. SVD revisited: A new variational principle, compatible feature maps and nonlinear extensions. Applied
and Computational Harmonic Analysis, 2016.

[2] Lanczos, C. Linear systems in self-adjoint form. The American Mathematical Monthly, 1958. y
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@ Coupled Covariance Eigenproblem (CCE)

- a new learning paradigm through covariance operators,
complementing the kernel-based formulations for KSVD

- allowing infinite-dimensional feature maps in KSVD

@ Asymmetric Nystrom

- finite-sample approximation to integral equations w.r.t.
asymmetric kernels and singular functions

- faster computation for KSVD with large-scale kernels.
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Coupled Covariance Eigenproblem (CCE)

In CCE, the goal is to learn a pair of r directions in the feature space 7
solving a coupled eigenvalues problem. We define

@ the sough-after directions in vectors of
Wy =[w),....wlleH, Wy=[w’,...,w']eH,

@ the empirical covariance operators

= IS B00e0) T =3 w(@)ua)

Definition (CCE)

Find W, € H", W,, € H' such that
LWy = AW, Ty Wy = AWy,

for some diagonal matrix A € R"™*" with positive values.
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Equivalence between CCE and KSVD

@ Given that a solution to the CCE exists, it holds that all directions {w}/_;,
{w}I_1 lie respectively in Span {¢(x;)}_1, Span {#(Z)}/1:

wi =Y bje(x), wi =3 biv(2)

where B, € R™" and B, € R™*" denote the matrices of coefficients.

@ Let Ty, Iy be linear operators on W € H' by [ Wi = (p(x:), wi)/V/n,
[Fo Wi = (¥(2), wi)/v'm, and G = [(¢(x)),%(2)))/v'nm] € R™". We have

Wy =T§Bs, Wy =T3By
FylBy = G By, rerBy = GBy

© Equivalence between the solutions in CCE and KSVD
Directions W,, W, are solution to CCE if and only if B4, By, are solution to:

G' GB, = G' ByA, GG' By = GByA,

Let BS" (resp. BS") be top-r left (resp. right) singular vectors of G from the KSVD.
Then Wy, =T,B5, W, = I';,BS/ is a solution to the CCE. 6/8



Asymmetric Nystrom Method

With an asymmetric kernel x(x, z), us(x) and vs(z) satisfying

)\sus(x):/ k(X, 2)vs(2) p2(2)dz,

Asvs(z):/ K(X, Z)us(x) px(x)dx

Dx

are called a pair of adjoint eigenfunctions (singular functions) corresponding to
the singular values A\s with Ay > X2 > ... > 0.

Through finite-sample approximation, the asymmetric Nystrém gives:

g™ = (\/Vmniy /2™) G vg"””),

N(N M= (\/ /)\S/)\(n m))Gn Mus a
(mm)

where A ™, u{™™ and v{™™ are from the SVD on an n x m (smaller)
submatrix sampled from G € RV,

[3] Williams, C. and Seeger, M. Using the Nystrom method to speed up kernel machines. NeurlPS 2000.
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Conclusion

@ A new asymmetric learning paradigm with CCE, allowing infinite
dimensional maps and providing covariance-based perspective for KSVD.

@ Formal derivations to asymmetric Nystrom method by starting from
integral equations related to the continuous analogue of SVD.

@ Extensive experiments on feature learning with asymmetric kernels.

Dataset F1Score () PCA KPCA SVD KSVD DeepW HOPE DIGAE Task N Time (s)
TSVD RSVD N
Cora Micro 0757 0.771 0776 0792 0741 0750 0.783 S SVD _Sym.Nys. Ours Speedup
Macro 0751 0767 0770 0784 0736 0473 0776 Cora 2708 0841 0274 0673 0160 1.71x
Citeseer 3312 0568 0290 0214 0136  214x
Giteseer Mcro 0648 0666 0667 0678 0624 0642 0.663 PUMed 19717 9053 4577 4dora 0441 35.51x
Macro 0611 0635 0632 0640 0587 0607 0627
Mcro 0765 0754 0766 0773 0759 0771 0781
Pubmed Macro 0736 0715 0738 0743 0737 0741 0.749 Pubmed
- Mcro 0681 0681 0694 0712 0637 0685 0.633

Macro 0517 0531 0543 0.596 0589 0.568 0.593 0.7
BlogCatalo Micro 0.648 0663 0.687 0.710 0.688 0.704  0.697 .
9 9 Macro 0.643 0.659 0.673 0.703 0679 0.697 0.690 0.6 1

® KSVD outperforms KPCA and even the methods specified for graphs 0.5
0.4
Method ACM DBLP Pubmed Wiki ; . .
NMI Coh NMI  Coh NMI Coh NMI Coh 1000 9500 18000
SVD 058 021 009 -0.06 031 042 039 042 m

KPCA 059 028 026 017 029 051 046 057

KSVD 068 032 028 021 033 054 048 0.64 ) L

BCOT 038 027 027 022 016 054 048 0.64 ® Asymmetric Nystrdm significantly speed up
EBC 0.62 020 0.15 021 0.19 0.56 047 063

® KSVD is comparable to the methods specified for bi-clustering

KSVD, and outperform symmetric Nystrém with

the same number of samplings. 8/8



