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Motivation

Given A ∈ Rn×m, it can be seen as
an array w.r.t. either rows or
columns:

X = {A[i , :] ≜ xi}n
i=1

Z = {A[:, j] ≜ zj}m
j=1

SVD gives two sets of linear
features for both X and Z.

KPCA provides only one set of
features to rows X .
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Figure: Example of asymmetric similarity.

SVD can process any rectangular matrix, but lacks flexibility for nonlinearity.

Classical kernel methods only deal with symmetric kernels.

2/8



Background: KSVD with LSSVMs Setups
Given two sets of samples {xi ∈ X}n

i=1, {zj ∈ Z}m
j=1 and feature mappings

ϕ : X → H, ψ : Z → H, the primal form of KSVD is given by

max
w,v,e,r

−v⊤w +
1

2λ

∑n

i=1
e2

i +
1

2λ

∑m

j=1
r 2
j

s.t. ei = w⊤ϕ(xi), i = 1, . . . , n,
rj = v⊤ψ(zj), j = 1, . . . ,m,

KSVD
The KKT conditions of KSVD leads to the shifted eigenvalue problem [1]:

G⊤Bϕ = BψΛ, GBψ = BϕΛ

where G = [
1√
nm

⟨ϕ(xi), ψ(zj)⟩] ∈ Rn×m is an asymmetric kernel.

According to Lanczos’ decomposition theorem [2], KSVD above can be solved by
taking for Bϕ,Bψ the top-r left and right singular vectors of the matrix G.

[1] Suykens, J. A. SVD revisited: A new variational principle, compatible feature maps and nonlinear extensions. Applied
and Computational Harmonic Analysis, 2016.

[2] Lanczos, C. Linear systems in self-adjoint form. The American Mathematical Monthly, 1958.
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Main Goals

Coupled Covariance Eigenproblem (CCE)

- a new learning paradigm through covariance operators,
complementing the kernel-based formulations for KSVD

- allowing infinite-dimensional feature maps in KSVD

Asymmetric Nyström

- finite-sample approximation to integral equations w.r.t.
asymmetric kernels and singular functions

- faster computation for KSVD with large-scale kernels.
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Coupled Covariance Eigenproblem (CCE)

In CCE, the goal is to learn a pair of r directions in the feature space H
solving a coupled eigenvalues problem. We define

the sough-after directions in vectors of

Wϕ = [wϕ
1 , . . . ,w

ϕ
r ] ∈ Hr , Wψ = [wψ

1 , . . . ,w
ψ
r ] ∈ Hr ,

the empirical covariance operators

Σϕ =
1
n

∑n

i=1
ϕ(xi)ϕ(xi)

∗, Σψ =
1
m

∑m

j=1
ψ(zj)ψ(zj)

∗.

Definition (CCE)

Find Wϕ ∈ Hr ,Wψ ∈ Hr such that

ΣϕWψ = ΛWϕ, ΣψWϕ = ΛWψ,

for some diagonal matrix Λ ∈ Rr×r with positive values.
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Equivalence between CCE and KSVD
1 Given that a solution to the CCE exists, it holds that all directions {wϕ

l }
r
l=1,

{wψ
l }r

l=1 lie respectively in Span {ϕ(xi)}n
i=1, Span {ψ(zj)}m

j=1:

wϕ
l =

∑n

i=1
bϕil ϕ(xi), wψ

l =
∑m

j=1
bψjl ψ(zj)

where Bϕ ∈ Rn×r and Bψ ∈ Rm×r denote the matrices of coefficients.

2 Let Γϕ, Γψ be linear operators on W ∈ Hr by [ΓϕW ]il = ⟨ϕ(xi),wl⟩/
√

n,
[ΓψW ]jl = ⟨ψ(zj),wl⟩/

√
m, and G = [⟨ϕ(xi), ψ(zj)⟩/

√
nm] ∈ Rn×m. We have

Wϕ = Γ∗
ϕBϕ, Wψ = Γ∗

ψBψ

ΓψΓ
∗
ϕBϕ = G⊤Bϕ, ΓϕΓ

∗
ψBψ = GBψ

3 Equivalence between the solutions in CCE and KSVD

Directions Wϕ,Wψ are solution to CCE if and only if Bϕ,Bψ are solution to:

G⊤GBψ = G⊤BϕΛ, GG⊤Bϕ = GBψΛ,

Let Bsvd
ϕ (resp. Bsvd

ψ ) be top-r left (resp. right) singular vectors of G from the KSVD.
Then Wϕ = Γ∗ϕBsvd

ϕ ,Wψ = Γ∗ψBsvd
ψ is a solution to the CCE. 6/8



Asymmetric Nyström Method

With an asymmetric kernel κ(x , z), us(x) and vs(z) satisfying

λsus(x) =
∫
Dz

κ(x , z)vs(z) pz(z)dz,

λsvs(z) =
∫
Dx

κ(x , z)us(x) px(x)dx

are called a pair of adjoint eigenfunctions (singular functions) corresponding to
the singular values λs with λ1 ≥ λ2 ≥ . . . ≥ 0.

Through finite-sample approximation, the asymmetric Nyström gives:

ũ(N,M)
s = (

√√
mnlλs/λ

(n,m)
s )GN,mv (n,m)

s ,

ṽ (N,M)
s = (

√√
mnlλs/λ

(n,m)
s )G⊤

n,Mu(n,m)
s ,

where λ(n,m)
s , u(n,m)

s , and v (n,m)
s are from the SVD on an n × m (smaller)

submatrix sampled from G ∈ RN×M .

[3] Williams, C. and Seeger, M. Using the Nyström method to speed up kernel machines. NeurIPS 2000.

7/8



Conclusion
A new asymmetric learning paradigm with CCE, allowing infinite
dimensional maps and providing covariance-based perspective for KSVD.

Formal derivations to asymmetric Nyström method by starting from
integral equations related to the continuous analogue of SVD.

Extensive experiments on feature learning with asymmetric kernels.

Dataset F1 Score (↑) PCA KPCA SVD KSVD DeepW HOPE DiGAE

Cora Micro 0.757 0.771 0.776 0.792 0.741 0.750 0.783
Macro 0.751 0.767 0.770 0.784 0.736 0.473 0.776

Citeseer Micro 0.648 0.666 0.667 0.678 0.624 0.642 0.663
Macro 0.611 0.635 0.632 0.640 0.587 0.607 0.627

Pubmed Micro 0.765 0.754 0.766 0.773 0.759 0.771 0.781
Macro 0.736 0.715 0.738 0.743 0.737 0.741 0.749

TwitchPT Micro 0.681 0.681 0.694 0.712 0.637 0.685 0.633
Macro 0.517 0.531 0.543 0.596 0.589 0.568 0.593

BlogCatalog Micro 0.648 0.663 0.687 0.710 0.688 0.704 0.697
Macro 0.643 0.659 0.673 0.703 0.679 0.697 0.690

• KSVD outperforms KPCA and even the methods specified for graphs

Method ACM DBLP Pubmed Wiki

NMI Coh NMI Coh NMI Coh NMI Coh

SVD 0.58 0.21 0.09 -0.06 0.31 0.42 0.39 0.42
KPCA 0.59 0.28 0.26 0.17 0.29 0.51 0.46 0.57
KSVD 0.68 0.32 0.28 0.21 0.33 0.54 0.48 0.64
BCOT 0.38 0.27 0.27 0.22 0.16 0.54 0.48 0.64
EBC 0.62 0.20 0.15 0.21 0.19 0.56 0.47 0.63

• KSVD is comparable to the methods specified for bi-clustering

Task N Time (s)

TSVD RSVD Sym. Nys. Ours Speedup

Cora 2708 0.841 0.274 0.673 0.160 1.71×
Citeseer 3312 0.568 0.290 0.214 0.136 2.14×
PubMed 19717 9.223 4.577 44.914 0.141 32.51×
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• Asymmetric Nyström significantly speed up

KSVD, and outperform symmetric Nyström with

the same number of samplings. 8/8


