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1. Motivation
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Imitation Learning

is a set of learning techniques which use demonstration datasets to directly learn policies.

» advantage: sample efficiency

» disadvantage: depends on the availability of a substantial number of high-quality demonstrations

Challenge

How to learn superior policies from imperfect demonstrations?
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A method to learn from imperfect demonstrations

fine-tune policy with online KL-regularized Reinforcement Learning

1. learning policy By IL with imperfect

o « argmin—  _ log | 8@
2. initialize the policy to be learned online with g: Reinforcement
Learning
< 0

3. as the optimization objective transitions from maximizing
the likelihood of expert actions to maximizing cumulative
rewards, to stablize the training process, KL-regularized
RL is employed to optimize the policy online:

-1

~ argmax , — 0
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Core |Ideas

Limited improvement of
due to primacy bias

introduced by imperfect
e A

e Reinforcement ¢
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_ -7 Limited improvement
of over o due
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Both the two problems are rooted in the imperfect demonstrations
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Core |Ideas

train policies iteratively

with higher-quality §
////////”’——r //4g;:;;;aﬂent

Learning

\

Improve the quantity and quality of : utilize the policy learned online as the demonstrator for the
subsequent training

utilize to boost
the quality of

» Demonstration boosting: utilizes demonstrations generated by the online-learned policy to
consistently enhance demonstration quality

» lIterative training: trains policies with IL and RL iteratively with higher-quality
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2. Method
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The Over-Constrained Exploration Problem

Theorem 4.2. Given a finite-horizon MDP , , , , , ,in which the reward
function depends only on states : - , and ademonstrator , for any
policy , the difference in the average of expected return with  is bounded
by the KL divergence between and

= l=max| | JZ - Pufmrolminte
J () over J(my)

Theorem 4.2 implies that the KL divergence constraint between policies bounds the upper limit of policy returns.
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Experimental verification: - - -
Stronger regularization results in smaller KL - ; | a o
values, and these smaller KL values are highly - o3 E™ -
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Reach Fixed-wing attitude control



The Primacy Bias Problem

Primacy Bias originally refers to a tendency to overfit early interactions
with the environment preventing the agent from improving its behavior on
subsequent experiences’.

However, we find that during the learning of offline IL to online RL, although
only IL directly utilizes imperfect demonstrations, these imperfect
demonstrations can still indirectly affect the learning of online RL in the
form of a primacy bias.

experimental verification: o0
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Lower-quality demonstrations correspond to inferior
offline and online learning policies. This observation
implies that lower-quality demonstrations induce the

primacy bias problem during online learning.
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Fixed-wing attitude control

1. Nikishin E, Schwarzer M, D’ Oro P, et al. The primacy bias in deep reinforcement learning[C]//International conference on machine learning. PMLR, 2022: 16828-16847.



The Proposed IRPO Method

Iterative training:
train policies iteratively
with higher-quality

T

S~

Demonstration boosting:
to boost the quality of

;8@

einforcement
Learning

utilize

Algorithm 1 Iterative Regularized Policy Optimization
(IRPO) method

Require: demonstrations D g, number of iteration: K
Ensure: 7
1: Dy + Dpg
2: forallkel... K do
3:  train 7y by Eq. 6 on Dy,
TNE 5 ?TE
optimize 7 by Eq.7 with the imitation policy as )
to get the 7},
sample with 7} to get D),
update demonstrations Dy, <— Dy Ty D,
end for

il

Sl B
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Demonstration boosting lterative training
—
For demonstration and a trajectory , the demonstration @
update operator 1 is defined: _
Reinforcement
D17 = { g\’i“f U {T}_._ it 3+ a0 < Fir) Learning
. else

After obtaining  from the iteration, we roll out demonstrations

with  and update demonstrations as - ! . \

lterative traini ng Demonstration boosting

Theorem 4.3. Define  as the policy obtained the iteration by optimizing the objective:

H-1

e (2]

t=0

T ¢ argmaxE
™

+ In| |

o 1s the pre-trained policy. Let L= - ,  1s the approximation error of value function at  iteration, then:
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Theorem 4.3 implies that as iterations proceed, approaches in an expected sense.
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3. Experiments



Experiments

Settings

> Tasks

Halfcheetah

Reach

Fixed-wing attitude control

> Baselines

fixed

annealed

EMA

AlphaStar Nature (2019)
VPT NeurlPS (2022)
PIRLNAV CVPR (2023)

Reincarnating RL  NeurlPS (2022)
TGRL ICML (2023)

PROTO ArXiv (2023)



Experiments

Main results

Method Venue Operation on KL Halfcheetah Hopper Reach Attitude control
BC Neural computation (1991) - 4967.05+£36.88  1673.42+£175.23 -42.68+1.26 0.17+£0.01
AlphaStar Nature (2019)
VPT NeurIPS (2022) fixed 6690.12+597.12  2641.55£207.13 -10.39+£1.92 0.38+0.02
PIRLNAV CVPR (2023)
Reincarnating RL NeurIPS (2022)
TGRL ICML (2023) annealed 6850.23+679.10  2586.6+£276.5 -0.34+£2.54 0.30£0.02
PROTO ArXiv (2023) EMA 6954.97+606.67 2656.114222.7  -7.36+2.07 0.32+0.01
IRPO (Ours) - iterative 7678.4+60.81 3044.7+48.65 -5.32+0.43 0.54+0.01
Average improvement over 3 baselines (%) 10.40 14.63 38.72 42.11

» The table indicates that IRPO outperforms all three baseline algorithms across all four tasks. This
suggests that IRPO exhibits effectiveness in learning superior policies from imperfect emonstrations and
exhibits applicability across a diverse range of tasks.
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IRPO Improves Policy’s Expected Return Progressively
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» Figure (a) shows that demonstrations cover more goals as IRPO iterates.

» Figure (b) shows that demonstrations cover more difficult goals as IRPO iterates.
» Figure (c) shows that policy achieve more goals as IRPO iterates.

» Figure (d) shows that policy achieve more difficult goals as IRPO iterates.

€ The above results suggest that IRPO can improve the quantity and quality of demonstrations, and
converge the policy to a higher performance with each iteration.



Experiments

Ablation Studies

@ Does iteration with rolling out data perform better than iteration with
remaining policy?

Data is more valuable than policy for the next training iteration.

@2 How many demonstrations should be rolled out for the next iteration?

Roll out as many demonstrations as possible.

@ Which part of goal space should be focused on rolling out demonstrations
for multi-goal problems?

Roll out demonstrations in areas with dense goal distribution.
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Ablation Studies

@ How to set the strength of KL regularization for different iterations?

Relax the KL regularization when demonstration quality improves. e 3

(d) Success rate of policies with
different strength of KL regular-

® How does the indicator function influence the performance? R SO o )
(r) Demonstration Demonstration Demonstration Policy Policy Policy
(quantity 1) (trajectory length |) (trajectory smooth |) (successrate T) (trajectory length |) (trajectory smooth |)
no f(7) 24924 193.61+128.29 7.23+5.53 0.43+0.01 285.32+131.95 17.12+16.61
f(7) = =smooth(T) 24924 132.07+60.37 5.76+6.35 0.4240.05 221.27+122.67 12.74+10.58
f(r) = =length(7) 24924 124.64+53.07 7.42+6.38 0.54+0.01 224.88+120.59 40.94+36.61
relopanes dendatbans 10184 281.83£149.48 2.11£2.21 0.38£0.02 223.14£131.06 11.01211.74

and policy in st iteration

IRPO demonstrates robustness to the setting of indicator functions.

©® How well does IRPO perform on easily accessible imperfect demonstrations, such as human play data?

: Demonstration Demonstration Policy
Bty Sowres  Heraipn (quantity T) (trajectory length |)  (success rate T)
IRPO performs well on human play data. —— ——
Human Play 1 613 143.71423 91 0.29+0.02
Human Play 2 21014 133.96+51.57 0.36+0.03
PID 1 10184 281.83+149.48 0.38+0.02
PID 2 24924 124.64+53.07 0.54+0.01
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4. Discussion
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Our Contributions

» We provide an analysis of the over-constrained exploration problem and primacy bias problem that
arise during offline IL to online RL with imperfect demonstrations.

» We propose IRPO, a framework that consists of iterative training and demonstration boosting. These
components work synergistically to address both the over-constrained exploration and primacy bias issues
simultaneously.

» We systematically assess the efficacy of IRPO across diverse and complex tasks. Our results demonstrate
that IRPO exhibits a consistent ability to enhance policy and demonstration quality over successive iterations.

Limitations

» the design of the indicator function in the demonstration boosting mechanism relies on our understanding of
the task.

» Our experimental validation has been limited to on-policy RL. It is still unclear whether IRPO is applicable to
off-policy RL settings.
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Thanks for watching!

» Code is available at https://github.com/GongXudong/IRPO
» Happy to answer any questions by email:

gongxudong_cs@aliyun.com davyfeng.c@qqg.com



