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Contrastive Learning
Contrastive learning finds the feature encoders 𝜙⋆, 𝜓⋆ that 
maximizes similarity 𝜙⋆ 𝑥 "𝜓	⋆(𝑦)	between positive data pair 
(𝑥, 𝑦) and minimizes similarity 𝜙⋆ 𝑥 "𝜓	⋆(𝑧)	between negative 
data pair 𝑥, 𝑧 .
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Image Source: Radford et. al., Learning transferable visual 
models from natural language supervision, ICML, 2021.



Contrastive Loss Function
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ØGlobal contrastive loss is the limiting upper bound of InfoNCE loss as batch size increases:
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InfoNCE Loss with mini-batch size 𝐵

Global Contrastive Loss
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(adopted in CLIP [1], SimCLR [2])

(adopted in SogCLR [3])



We propose to minimize the global contrastive loss ℒ(𝜃), 

which upper bounds the large batch objective used in 

CLIP for any batch size 𝐵 > 0, at the cost of constant 

batch size using MCMC sampling.
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Global Loss Gradient

∇ℒ 𝜃 = 𝔼
$,& ~𝒟#$%

−𝛽	∇2 𝜙 𝑥; 𝜃 ,𝜓 𝑦; 𝜃 	 + 	 𝔼
$,& ~𝒟#$%

𝛽 8
-∈𝐃&'(($)

𝑝$,2 𝑧 	∇2 𝜙 𝑥; 𝜃 ,𝜓 𝑧; 𝜃

 ≡ ∇ℒ345 𝜃 + ∇ℒ678(𝜃)

with a softmax distribution:
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ØNegative pair gradient ∇ℒ678 𝜃  admits a data-dependent softmax distribution 𝑝$,2 𝑧 .
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EMC2: MCMC Sampling on ∇ℒ!"# 𝜃
ØWe propose to apply Metropolis-Hasting algorithm for sampling ∇ℒ678 𝜃 .
ØAccept a random negative sample 𝑍9: with probability

𝑄$*,2 𝑍9
:, 𝑍9 =

𝑝$*,2(𝑍9
:)

𝑝$*,2(𝑍9)
=
exp(𝛽	𝜙 𝑥9; 𝜃 ,𝜓 𝑍9:; 𝜃 )
exp(𝛽	𝜙 𝑥9; 𝜃 ,𝜓 𝑍9; 𝜃 )

(Hardness-aware negative sampling)

ØOverhead due to Metropolis-Hasting Sampling:

Ø 𝒪 𝑩𝟐  Computation Overhead: Only requires computing the acceptance probability 𝑄,!,. 𝑍/
0, 𝑍/ .

Ø 𝒪(𝒎) Memory Overhead: Only requires storing the exponential score exp(𝛽	𝜙 𝑥/; 𝜃 "𝜓 𝑍/; 𝜃 )	of previously accepted negative 
sample 𝑍/, for each 𝑥/ in the dataset of size 𝑚.

ØMCMC with Warm Starting: Retain Markov Chain state 𝑍9 from previous epoch and uses 𝒪(1) samples 
for each epoch, more efficient than 𝒪(1/𝜏KLM) samples in Cold Started MCMC.

ØConvergence: We guaranteed EMC2 converges at the rate of 𝒪(1/ 𝑇).
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Experiments

EMC2 shows competitive small batch performance.

Figure 1: Training ResNet-18 on STL-10 using Adam with batch 
size 𝑏 = 32, compared on linear probe accuracy.
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EMC2 converges accurately with batch size 𝑏 = 4.

Figure 2: Comparison on a subset of STL-10 using the first 500 
images and pre-computed two augmentations for each image. 

Trained using SGD with batch size 𝑏 = 4.
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