

EMC2: Efficient MCMC Negative Sampling for Contrastive Learning with Global Convergence

July 15, 2024

Authors

Chung-Yiu Yau

AWS Applied Scientist Intern, PhD Candidate @ The Chinese University of Hong Kong

Hoi-To Wai Professor, The Chinese University of Hong Kong

Parameswaran Raman

AWS Applied Scientist

Soumajyoti Sarkar AWS Applied Scientist

Mingyi Hong Professor, University of Minnesota

Image Source: Radford et. al., Learning transferable visual models from natural language supervision, ICML, 2021.

Contrastive Learning

Contrastive learning finds the feature encoders ϕ^*, ψ^* that maximizes similarity $\phi^*(x)^\top \psi^*(y)$ between positive data pair (x, y) and minimizes similarity $\phi^*(x)^\top \psi^*(z)$ between negative data pair (x, z) .

Contrastive Loss Function

InfoNCE Loss with mini-batch size

$$
\mathcal{L}_{NCE}(\theta; B) = \mathop{\mathbb{E}}_{(x, y) \sim \mathcal{D}_{\text{pos}} \mathbf{Z} \sim \mathcal{D}_{\text{neg}}(x; B)} \left[-\log \frac{\exp(\beta \phi(x; \theta)^{\top} \psi(y; \theta))}{\sum_{z \in \mathbf{Z}} \exp(\beta \phi(x; \theta)^{\top} \psi(z; \theta))} \right]
$$

(adopted in CLIP [1], SimCLR [2])

Global Contrastive Loss

$$
\mathcal{L}(\theta) = \mathop{\mathbb{E}}_{(x,y)\sim\mathcal{D}_{\text{pos}}} \left[-\log \frac{\exp(\beta \phi(x;\theta)^{\top} \psi(y;\theta))}{\sum_{z \in \mathbf{D}_{\text{neg}}(x)} \exp(\beta \phi(x;\theta)^{\top} \psi(z;\theta))} \right]
$$

(adopted in SogCLR [3])

ØGlobal contrastive loss is the limiting upper bound of InfoNCE loss as batch size increases:

$$
\mathcal{L}_{NCE}(\theta; B) \le \mathcal{L}(\theta) \quad \forall B > 0 \qquad \qquad \lim_{B \to |\mathbf{D}_{neg}|} \mathcal{L}_{NCE}(\theta; B) = \mathcal{L}(\theta)
$$

[1] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. Learning transferable visual models from natural language supervision. *In International Conference on Machine Learning*, pp. 8748–8763. PMLR, 2021.

[2] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A simple framework for contrastive learning of visual representations. *In International Conference on Machine Learning*, pp. 1597–1607. PMLR, 2020. [3] Yuan, Z., Wu, Y., Qiu, Z.-H., Du, X., Zhang, L., Zhou, D., and Yang, T. Provable stochastic optimization for global contrastive learning: Small batch does not harm performance. *In International Conference on Machine Learning*, pp. 25760–25782. PMLR, 2022.

We propose to minimize the global contrastive loss $\mathcal{L}(\theta)$, which upper bounds the large batch objective used in CLIP for any batch size $B > 0$, at the cost of constant batch size using MCMC sampling.

Global Loss Gradient

$$
\nabla \mathcal{L}(\theta) = \mathop{\mathbb{E}}_{(x,y)\sim \mathcal{D}_{\text{pos}}} \left[-\beta \nabla_{\theta} (\phi(x;\theta)^{\top} \psi(y;\theta)) \right] + \mathop{\mathbb{E}}_{(x,y)\sim \mathcal{D}_{\text{pos}}} \left[\beta \sum_{z \in \mathbf{D}_{\text{neg}}(x)} p_{x,\theta}(z) \nabla_{\theta} (\phi(x;\theta)^{\top} \psi(z;\theta)) \right]
$$

 $\equiv \nabla \mathcal{L}_{\text{pos}}(\theta) + \nabla \mathcal{L}_{\text{neg}}(\theta)$

with a softmax distribution:

$$
p_{x,\theta}(z) = \frac{\exp(\beta \phi(x;\theta)^{\top} \psi(z;\theta))}{\sum_{z' \in \mathbf{D}_{\text{neg}}(x)} \exp(\beta \phi(x;\theta)^{\top} \psi(z';\theta))}
$$

 \triangleright Negative pair gradient $∇L_{neg}$ ($θ$) admits a data-dependent softmax distribution $p_{x,θ}(z)$.

EMC²: MCMC Sampling on $\nabla \mathcal{L}_{\text{neg}}(\theta)$

 \triangleright We propose to apply **Metropolis-Hasting** algorithm for sampling $∇\mathcal{L}_{\text{neg}}(\theta)$. \triangleright Accept a random negative sample Z'_i with probability

$$
Q_{x_i,\theta}(Z'_i, Z_i) = \frac{p_{x_i,\theta}(Z'_i)}{p_{x_i,\theta}(Z_i)} = \frac{\exp(\beta \phi(x_i; \theta)^\top \psi(Z'_i; \theta))}{\exp(\beta \phi(x_i; \theta)^\top \psi(Z_i; \theta))}
$$

(Hardness-aware negative sampling)

\triangleright Overhead due to Metropolis-Hasting Sampling:

 \triangleright $\mathcal{O}(B^2)$ Computation Overhead: Only requires computing the acceptance probability $Q_{x_i,\theta}(Z'_i,Z_i)$.

- \triangleright $\mathcal{O}(m)$ Memory Overhead: Only requires storing the exponential score $\exp(\beta \phi(x_i;\theta)^\top \psi(z_i;\theta))$ of previously accepted negative sample Z_i , for each x_i in the dataset of size m .
- \triangleright MCMC with Warm Starting: Retain Markov Chain state Z_i from previous epoch and uses $\mathcal{O}(1)$ samples for each epoch, more efficient than $O(1/\tau_{mix})$ samples in Cold Started MCMC.

Convergence: We quaranteed EMC² converges at the rate of $O(1/\sqrt{T})$.

Experiments

EMC2 shows competitive **small batch performance**.

Figure 1: Training ResNet-18 on STL-10 using Adam with batch size $b = 32$, compared on linear probe accuracy.

EMC² converges accurately with batch size $b = 4$.

Figure 2: Comparison on a subset of STL-10 using the first 500 images and pre-computed two augmentations for each image. Trained using SGD with batch size $b = 4$.

Thank You.

Paper Github

amazon | science