

CurBench: Curriculum Learning Benchmark

Yuwei Zhou, Zirui Pan, Xin Wang, Hong Chen, Haoyang Li, Yanwen Huang, Zhixiao Xiong, Fangzhou Xiong, Peiyang Xu, Shengnan Liu, Wenwu Zhu Media and Network Lab, Tsinghua University

Background

Curriculum Learning

- Curriculum learning is a training paradigm where machine learning models are trained in a meaningful order, inspired by the way humans learn curricula.
- It brings the advantage of enhancing model generalization and accelerating convergence speed.

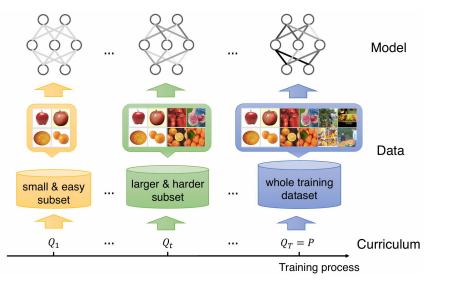
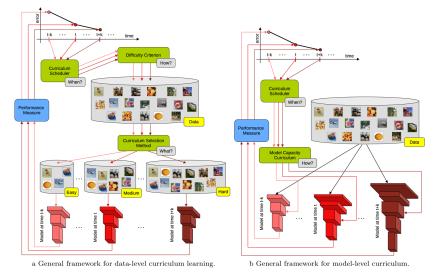



Illustration of Curriculum Learning Concept from [1].

Illustration of Curriculum Learning Framework from [2].

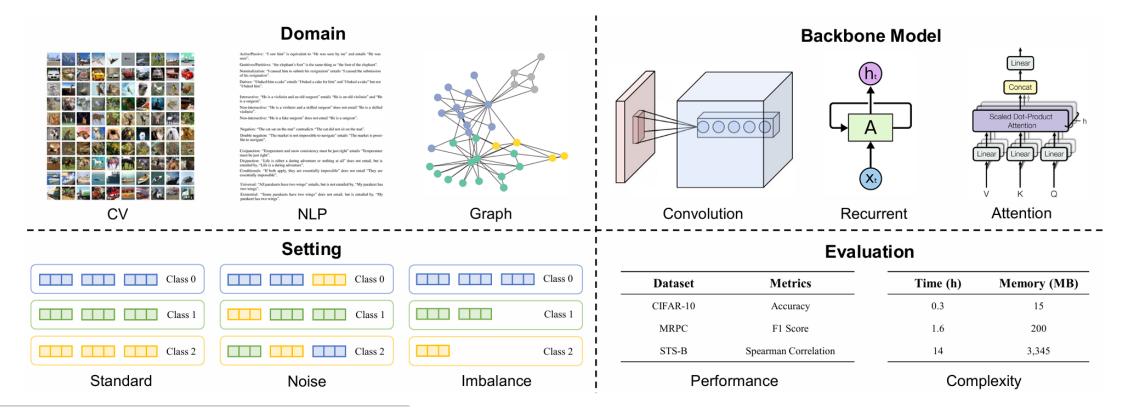
[1] A Survey on Curriculum Learning. TPAMI 2021.[2] Curriculum Learning: A Survey. IJCV 2022.

Problem

No Benchmark for Curriculum Learning

- As new curriculum learning methods continue to emerge, it remains an open issue to benchmark them.
- The increasing number of works pose challenges in terms of comparison and evaluation, mainly due to the differences in the experimental setups including datasets, backbone models, and settings.

Methods of Comparison	The Same	The Difference		
DCL v.s. DDS	WideResNet-28-10	CIFAR-100 v.s. CIFAR-10		
DIHCL v.s. CBS	ImageNet	ResNet-50 v.s. ResNet-18		
MCL v.s. LRE	MNIST and LeNet	Standard v.s. Imbalance		


Related Works

Summative Work on Curriculum Learning

- From a theoretical perspective:
 - General Curriculum Learning:
 - A Survey on Curriculum Learning. TPAMI 2021.
 - Curriculum Learning: A Survey. IJCV 2022.
 - Curriculum Learning for Reinforcement Learning:
 - Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey. JMLR 2020.
 - Automatic Curriculum Learning For Deep RL: A Short Survey. IJCAI 2020.
 - Curriculum Learning for Graph Machine Learning:
 - Curriculum graph machine learning: A survey. IJCAI 2023.
- From an empirical perspective:
 - Curriculum Learning Library:
 - CurML: A Curriculum Machine Learning Library. ACMMM 2022.

Outline

 CurBench includes 15 datasets spanning 3 research domains, 9 backbone models, 3 training settings, and 2 evaluation dimensions, with a toolkit for reproducing 15 core curriculum learning methods.

Domain	Dataset	Setting	Training	Validation	Test	Class	Metrics
	CIFAR-10	Standard / Noise-0.4	45,000	5,000	10,000	10	Accuracy
	CIFAK-10	Imbalance-50	12,536	5,000	10,000	10	Accuracy
CV	CIFAR-100	Standard / Noise-0.4	45,000	5,000	10,000	100	Accuracy
CV	CIFAK-100	Imbalance-50	12,536	5,000	10,000	100	Accuracy
	Tiny ImagaNat	Standard / Noise-0.4	90,000	10,000	10,000	200	Accuracy
	Tiny-ImageNet	Imbalance-50	22,700	10,000	10,000	200	Accuracy
	RTE	Standard / Noise-0.4	2,490	277	-	2	Accuracy
	MRPC	Standard / Noise-0.4	3,668	408	-	2	F1 Score
	STS-B	Standard / Noise-0.4	5,749	1,500	-	6	Spearman
NLP	CoLA	Standard / Noise-0.4	8,551	1,043	-	2	Matthews
INLE	SST-2	Standard / Noise-0.4	67,349	872	-	2	Accuracy
	QNLI	Standard / Noise-0.4	104,743	5,463	-	2	Accuracy
	QQP	Standard / Noise-0.4	363,846	40,430	-	2	F1 Score
	MNLI-(m/mm)	Standard / Noise-0.4	392,702	9,815/9,832	-	3	Accuracy
	MUTAG	Standard / Noise-0.4	150	19	19	2	Accuracy
	PROTEINS	Standard / Noise-0.4	890	111	112	2	Accuracy
Graph	NCI1	Standard / Noise-0.4	3,288	411	411	2	Accuracy
	ogbg-molhiv	Standard / Noise-0.4	32,901	4,113	4,113	2	ROC-AUC

Dataset

Model

Domain	Model	Mechanism	Parameters
	LeNet	Convolution	$\sim 0.07 { m M}$
CV	ResNet-18	Convolution	$\sim 11.2 M$
	ViT	Attention	$\sim 9.6 M$
	LSTM	Recurrent	$\sim 10.4 \mathrm{M}$
NLP	BERT	Attention	$\sim 109 \mathrm{M}$
	GPT2	Attention	$\sim 124 \mathrm{M}$
	GCN	Convolution	$\sim 0.01 \mathrm{M}$
Graph	GAT	Attention	$\sim 0.14 \mathrm{M}$
	GIN	Isomorphism	$\sim 0.01 \mathrm{M}$

Setting

- Standard: No additional data processing.
- Noise-p: p% data samples are independently attached with random incorrect labels.
- Imbalance-r: A ratio of r between the number of samples in the largest class and that in the smallest class in a long-tailed dataset where the number of samples for each class follows a geometric sequence.

Evaluation

- Performance: We report the average and standard deviation of the metric over 5 runs.
- Complexity: We record the training time and maximum memory consumption on the same GPU device.

Toolkit

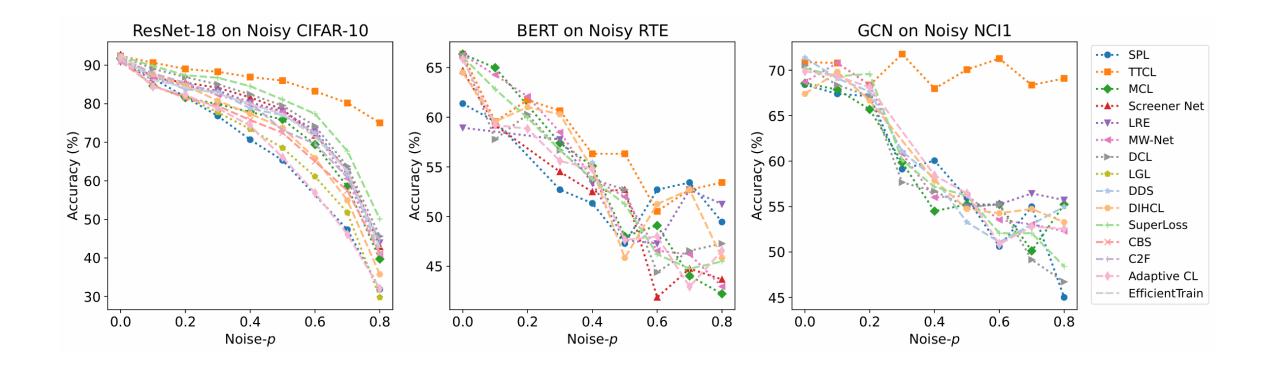
Dataset Setting Ratio	Model Input Size Class	Epoch Objective	Performance							
CIFAR-10 Noise 0.4	ResNet-18 (32, 32) 10	200 Adam Cross Entropy	Accuracy							
Data Processing	Model Loading	Objective Fitting	F1 Score							
via Data Selection	via Model Adjustment	via Loss Reweighting	Complexity							
SPL (NeurIPS, 2010) TTCL (ICML, 2018)	CBS (NeurIPS, 2020)	ScreenerNet (arXiv) LRE (ICML, 2018)	Training Time							
MCL (ICLR, 2018) DIHCL (NeurIPS, 2020)		MW-Net (NeurIPS, 2019) DCL (NeurIPS, 2019)	GPU Memory							
LGL (CVPR, 2019) Adaptive CL (ICCV, 2021)		SuperLoss (NeurIPS, 2020) DDS (ICML, 2020)								
C2F (arXiv) EfficientTrain (ICCV, 2023)	Curriculum Learning		Evaluation							

Main Results on CV and Graph Datasets

 There has been no such method that outperforms others all the time, and the effectiveness depends on specific scenarios.

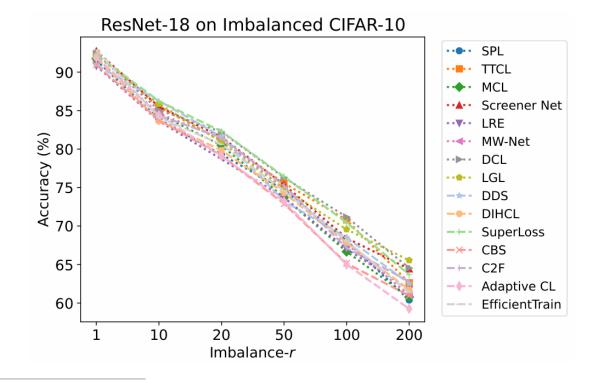
	CIFAR-10			CIFAR-100			Tiny-ImageNet			
	Standard	Noise-0.4	Imbalance-50	Standard	Noise-0.4	Imbalance-50	Standard	Noise-0.4	Imbalance-50	
LeNet	69.95 _{1.00}	65.02 _{1.12}	44.93 _{0.56}	35.460.70	29.59 _{0.40}	19.57 _{0.64}	22.080.61	18.63 _{0.43}	11.65 _{0.30}	
LeNet + CL	70.43 _{0.41}	65.93 _{0.57}	45.28 _{0.56}	35.63 _{0.78}	30.87 _{0.48}	$19.74_{0.17}$	$22.83_{0.44}$	19.91 _{0.26}	$12.36_{0.47}$	
ResNet-18	92.33 _{0.16}	$82.75_{2.06}$	$75.49_{0.87}$	69.97 _{0.27}	$52.14_{0.39}$	$42.57_{0.68}$	51.41 _{1.74}	$39.42_{0.21}$	$28.83_{0.38}$	
ResNet-18 + CL	92.88 _{0.23}	86.92 _{0.20}	76.43 0.96	71.31 _{0.14}	58.56 _{0.60}	43.47 _{0.43}	53.61 _{0.48}	43.64 _{0.72}	30.82 _{0.36}	
ViT	$79.90_{0.38}$	64.19 _{0.51}	$52.12_{0.81}$	$51.05_{0.62}$	$35.25_{0.24}$	$26.05_{0.52}$	38.16 _{0.53}	$24.90_{0.26}$	$17.15_{0.31}$	
ViT + CL	80.66 _{0.27}	69.83 _{0.53}	52.85 _{0.81}	51.93 _{0.64}	39.15 _{0.30}	26.40 _{0.34}	38.92 _{0.53}	29.76 _{0.34}	$17.47_{0.14}$	

	MUTAG		PROTEINS		NCI1		ogbg-molhiv	
	Standard	Noise-0.4	Standard	Noise-0.4	Standard	Noise-0.4	Standard	Noise-0.4
GCN	73.682.11	66.31 _{7.14}	70.71 _{4.20}	63.57 _{6.45}	69.59 _{1.23}	55.23 _{3.21}	75.841.02	64.294.55
GCN + CL	74.74 _{3.94}	71.58 _{5.37}	$73.21_{4.41}$	71.61 _{6.62}	71.39 _{1.29}	67.98 _{2.01}	77.41 _{1.15}	$72.81_{1.14}$
GAT	$69.47_{6.14}$	$65.26_{5.37}$	64.46 _{2.96}	$65.71_{9.13}$	56.74 _{2.86}	53.77 _{2.12}	$68.07_{2.34}$	$65.37_{2.66}$
GAT + CL	72.63 _{8.42}	69.47 _{10.21}	69.82 _{7.13}	69.11 _{3.77}	59.37 _{1.59}	55.67 _{4.70}	72.64 _{1.16}	66.73 _{1.84}
GIN	86.847.90	$78.95_{3.72}$	74.11 _{4.24}	69.82 _{1.73}	79.32 _{1.40}	60.24 _{3.92}	$74.72_{1.36}$	63.07 _{3.73}
GIN + CL	88.42 _{2.10}	81.58 _{4.56}	$77.14_{4.88}$	$73.93_{1.82}$	82.04 _{1.90}	$62.14_{6.47}$	$76.53_{1.97}$	$65.53_{1.61}$

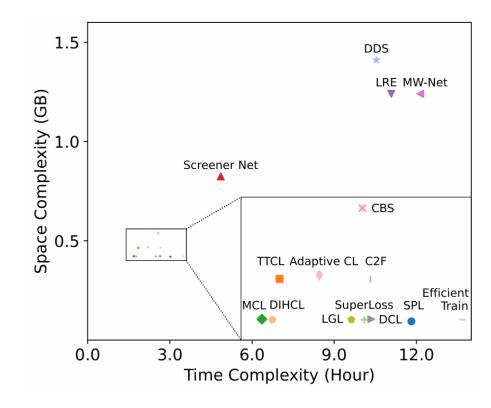

Main Results on NLP Datasets

 There has been no such method that outperforms others all the time, and the effectiveness depends on specific scenarios.

			RT	E	MR	PC	STS	5-В	Co	DLA	-
			Standard	Noise-0.4	Standard	Noise-0.4	Standard	Noise-0.4	Standard	Noise-0.4	
	LSTM		52.95 _{1.34}	53.43 _{1.77}	81.430.14	81.220.00	12.73 _{0.72}	10.90 _{1.19}	11.29 _{1.27}	3.27 _{1.68}	-
	LSTM -	⊦ CL	53.07 _{1.29}	54.22 _{1.77}	81.54 _{0.18}	81.24 _{0.05}	$14.11_{2.21}$	$11.75_{1.61}$	12.65 _{1.21}	8.55 _{2.10}	
	BERT		64.62 _{3.33}	54.22 _{3.14}	$88.54_{0.45}$	81.89 _{0.83}	$85.26_{0.22}$	$80.71_{1.01}$	57.39 _{1.30}	$32.35_{0.79}$	
	BERT +	- CL	66.35 _{1.76}	56.32 _{5.04}	88.69 _{1.24}	81.94 _{0.55}	85.42 _{0.22}	81.31 _{0.25}	57.80 _{1.96}	45.79 _{1.64}	
	GPT2		$65.34_{1.95}$	52.924.49	$85.49_{0.86}$	78.231.72	$76.44_{1.20}$	$69.65_{1.85}$	37.00 _{3.72}	$5.86_{1.69}$	
	GPT2 +	CL	66.35 _{2.10}	57.40 _{3.39}	86.29 _{0.36}	$82.55_{0.88}$	80.82 _{1.39}	71.57 _{1.74}	39.95 _{3.16}	$12.54_{2.75}$	
	SST-2		QNLI		(QQP		MNLI-(m/mm)			
	Standard		Noise-0.4	Standard	Noise-0.4	Standard	Noise-0.4	Sta	ndard	Noise	-0.4
LSTM	81.	67 _{0.85}	64.36 _{1.12}	50.540.00	50.62 _{0.16}	75.690.27	60.72 _{0.79}	61.380.30	/ 61.21 _{0.45}	44.41 _{0.51} /	44.830.90
LSTM +	CL 82.	87 _{0.88}	$78.58_{1.64}$	51.02 _{0.46}	50.83 _{0.45}	75.73 _{0.21}	66.47 _{0.72}	62.47 _{0.36}	62.33 _{0.42}	58.59 _{0.54} /	58.50 _{0.64}
BERT	92.	660.28	$87.22_{0.82}$	91.21 _{0.24}	$81.21_{0.76}$	88.05 _{0.12}	$76.23_{0.48}$	83.89 _{0.31}	/ 84.38 _{0.29}	78.65 _{0.70} /	79.21 _{0.62}
BERT + C	BERT + CL 92.82 _{0.16}		91.25 _{0.59}	91.49 _{0.13}	89.45 _{0.44}	88.16 _{0.13}	84.50 _{0.25}	84.27 _{0.07}	/ 84.40 _{0.42}	81.73 _{0.31} /	82.25 _{0.40}
GPT2	91.	95 _{0.49}	$85.83_{0.57}$	87.92 _{0.31}	$78.72_{0.37}$	86.00 _{0.23}	$75.40_{0.84}$	81.53 _{0.21}	/ 82.40 _{0.21}	76.56 _{0.15} /	77.69 _{0.15}
GPT2 + 0	CL 92.	25 _{0.42}	90.34 _{0.53}	88.17 _{0.67}	$84.00_{0.70}$	86.68 _{0.16}		81.90 _{0.23}	82.59 _{0.35}	78.36 _{0.19} /	79.62 $_{0.44}$


Results in Noise Settings

Methods by teacher transferring have edges in noise settings.


Results in Imbalance Settings

- All methods achieve similar performances under different imbalance ratios.
- Methods by reweighting perform relatively well in imbalance settings.

Time and Space Complexity

 Methods involving gradient calculation and extra learnable networks generally have higher time and space complexity.

Summary

Findings

- 1) There has been no such method that outperforms others all the time, and the effectiveness depends on specific scenarios.
- 2) Curriculum learning brings more significant improvements in noise settings than in standard and imbalance ones.
- 3) Methods by teacher transferring have edges in noise settings, while methods by reweighting perform relatively well in imbalance settings.
- 4) Methods involving gradient calculation and extra learnable networks generally have higher time and space complexity.

Summary

Contributions

- 1) We propose CurBench, the first benchmark on curriculum learning to the best of our knowledge.
- 2) We conduct extensive experiments to impartially evaluate and compare the performance and complexity of existing curriculum learning methods under various experimental setups.
- 3) We make in-depth analyses and demonstrate intriguing observations on curriculum learning based on empirical results derived from CurBench.

CurBench: Curriculum Learning Benchmark

Yuwei Zhou, Zirui Pan, Xin Wang, Hong Chen, Haoyang Li, Yanwen Huang, Zhixiao Xiong, Fangzhou Xiong, Peiyang Xu, Shengnan Liu, Wenwu Zhu Media and Network Lab, Tsinghua University