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Deep Neural Networks

Define L,N ∈ N+, N0 = d and NL+1 = 1, Ni ∈ N+ for i = 1, 2, . . . , L,
then a σ-NN ϕ with the width N and depth L can be described as follows:

x = h̃0
W1,b1−→ h1

σ−→ h̃1 . . .
WL,bL−→ hL

σ−→ h̃L
WL+1,bL+1−→ ϕ(x) = hL+1,

where hi := Wi h̃i−1 + bi , and h̃i = σi (hi ) . Here, σ denotes the activation
function, such as ReLU(x) := max{x , 0}, ReLU2, or tanh(x), among
others. (L = 1 will reduce to the shallow neural networks)
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Error Analysis for Sobolev Training

Denote

θD := arg inf
θ
RD(θ) := arg inf

θ

∫
(0,1)d

|∇(f − ϕ(x ;θ))|2 + |f − ϕ(x ;θ)|2 dx ,

(1)

θS := arg inf
θ
RS(θ) := arg inf

θ

M∑
i=1

|∇(fi − ϕ(xi ;θ))|2 + |fi − ϕ(xi ;θ)|2

M
,

(2)

where fi = f (xi ).
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Error Analysis for Sobolev Training

The overall inference error (generalization error) is ERD(θS), which can
be divided into two parts:

ERD(θS) ≤ RD(θD)︸ ︷︷ ︸
approximation error

+ERD(θS)− ERS(θS).︸ ︷︷ ︸
sample error

(3)
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Discussion about deep neural networks

• Advantages: The approximation rate O(W− 2(n−m)
d ) of deep neural

networks is much better than traditional methods and shallow or not very

deep neural networks O(W− (n−m)
d ).

• Disadvantages: The structure of deep neural networks is too complex,
and the absolute value of parameters in deep neural networks can be very
large, which can cause a large sample error, making it very challenging to
train the neural network effectively.

Deep or shallow neural network, how to choose between them?1

1Y. Yang and J. He. Deeper or wider: A perspective from optimal generalization
error with Sobolev Loss. ICML, 2024.
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Generalization error about deep neural networks

Theorem

Let d , L,M ∈ N+, B,C1,C2 ∈ R+. For any f ∈ W n,∞([0, 1]d) with
∥f ∥W n,∞([0,1]d ) ≤ 1 for n > k and k = 0, 1, 2, we have

ERD,k(θS ,k) ≤ C

( W

(logW )2

)− 4(n−k)
d

+
W 2

M
logM


where W = O(L(log L)3) is the number of parameters in DeNNs, E is
expected responding to X , X := {x1, . . . , xM} is an independent random
variables set uniformly distributed on [0, 1]d , and C is independent with
M, L.

• k represents the regularity of loss functions, M denotes the number of
sample points, W signifies the number of parameters of neural networks.
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Optimality

Corollary

Let d ,M ∈ N+, B,C1,C2 ∈ R+. For any f ∈ W n,∞([0, 1]d) with
∥f ∥W n,∞([0,1]d ) ≤ 1 for n > k and k = 0, 1, 2, we have

ERD,k
(θS ,k) ≤ CM

− 2(n−k)
2(n−k)+d

where the result is up to the logarithmic term, E is expected responding to
X , and X := {x1, . . . , xM} is an independent set of random variables
uniformly distributed on [0, 1]d . C is a constant independent of M.
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Generalization error about shallow neural networks

Proposition ((Schmidt-Hieber(2020), Suzuki(2018)))

Let F be a set of functions defined as follows:

F := {ϕ is a σ2-NN with number of parameters O(W ) and

depth log(W ) and parameters bounded by F},

where F is a universal constant larger than 1. Assume that
∥f ∥W n,∞([0,1]d ) ≤ 1 for n > k and k = 0, 1, 2. If ε > 0 satisfies
N (ε,F , n) ≥ 3, then it holds that

ERD,k(θS ,k) ≤ C
[
W−2(n−k)/d + ε(1 + σ) +

(
1 + σ2

)
·
∑d

i=1 logN (ε,Dk
i F , ∥ · ∥∞) +N (ε,F , ∥ · ∥∞)

M

]
for k = 0, 1, 2, where C , σ are universal constants, N (ε,DiF , ∥ · ∥∞) is
covering number.
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Deep or shallow neural network

• Generalization error of deeper neural networks: O
(
W− 4(n−k)

d + W 2

M

)
.

• Generalization error of wider neural networks: O
(
W− 2(n−k)

d + W
M

)
.

When M ≥ W
2n+2d−2k

d , the order of the generalization error in DNNs with
an arbitrary number of hidden layers surpasses that of shallow neural
networks.
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Deep or shallow neural network

Figure: Type 1 represents NNs with shallow or moderately deep hidden layers,
where the number of hidden layers is deliberately confined to be O(1) or
O(log(1/ε)). Type 2 denotes DNNs with an arbitrary number of hidden layers.
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Deep or shallow neural network

Neural Network Large Data Regime Small Data Regime
Shallow (Dep.1, Wid.20) Mean: 0.000618, Std: 9.86e-05 Mean: 0.001512, Std: 0.000252
Deep (Dep.4, Wid.10) Mean: 0.000369, Std: 2.57e-05 Mean: 0.004956, Std: 0.004462

Table: This table compares the performance of shallow and deep neural networks
in terms of mean test performance and standard deviation across different data
regimes. It illustrates how network depth and data availability impact learning
outcomes, with shallow networks performing better in small data scenarios, while
deep networks excel with larger datasets.
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Deep or shallow neural network

• If the number of parameters in our neural networks is fixed, the choice
between shallow or moderately deep hidden layers and DNNs depends on
the availability of sample points.

• When the number of sample points is fixed, the decision between
establishing a neural network with few parameters or one with a higher
parameter count depends on the specific requirements.

• The space between the two curves signifies a transition region. Within
this region, it is advisable to shift from using shallow neural networks to
DNNs to effectively address the problem, especially when the pair (W ,M)
falls within such transitional areas.
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Discussions and future works

•: Considering approximation and generalization errors for more precise
functions.

•: We specifically compare DNNs, characterized by an abstract number of
hidden layers, with shallow or not very DNNs in the underparameterized
case. For the overparameterized case, we consider this as a topic for future
research.

•: Add the training analysis like NTK, and combine three part errors.
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Thank you for your listening!
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