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Coherent imaging

Various imaging systems employ coherent light:

» Optical coherence tomography (OCT)

> Synthetic aperture radar (SAR)

SAR imaging

> Inverse synthetic aperture radar (ISAR)

Colerdar
> Digital holography i

Beamsplire

=
One of the key challenges is multiplicative noise. i /

Digital holography



Coherent imaging: mathematical model

y=AXw+z

> X =diag(x) € R"*" where x € IR” is the desired signal.
» welR"™: signal-dependent speckle noise.

> AeR™*": known sensing matrix, m < n.

» zelR™: additive white Gaussian noise.

|
Goal: Recover x from measurements y = AXw + z.

To improve performance: acquire multiple independent looks, i.e.,
recording x under various realizations of the noise process:

Ve =AXwe+zy



MLE of multiple compressive looks

We derive the maximum likelihood estimator (MLE) of multi-look
compressive measurements:

X= argmin f1(x)
X=diag(x):xe€

1 & _
fr(x) =logdet(AX>AT) + . Yy Ax*Ah) Ty,
/=1

Projected Gradient Descent for solving MLE-based recovery:
> Initialize Xp.
> Fort=1,2,...:

i. Gradient descent: S;41 = X;— uVf1(Xy)

ii. Projection: X;1 =argminy | gy(u) —Ss41 II§



Bagged Deep Image Prior (Bagged-DIP)

Deep image prior (DIP) hypothesis
Choose u~ A (0,1;). x€ 2 can be effectively expressed as x = gg(u)
Bagging idea: Average over several low-bias and hopefully weakly
dependent estimates (DIP outputs) yields a lower-variance estimate.
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Performance of MLE as a function of m, n, L

Sensor measurements:
Ye = AXLU[, (= 1,2,...,L

Recovery method:
X = argmin f7(x)
x:x=gp(u)

Suppose i.i.d. Ajj ~A(0,1), m<n and gg(u), as function
of 0 € [-1,1]%, is I-Lipschitz, we have
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Newton-Schulz matrix inversion approximation

In PGD, gradient computation in each iteration ¢ involves m x m
matrix By = AX?AT inversion:

Instead of computing the matrix inverse directly, the iterations of
Newton-Schulz for finding (B,)~! is given by

MF = My MR Y1 - B, MR

where M¥ is the approximation of (Bp)~! at iteration k. It starts with

M° =B}, which is the matrix inverse from previous GD iteration.



Empirical results align with theoretical bounds

m/n #looks Barbara Peppers House Average
25 19.91/0.443 19.70/0.385 20.15/0.377 19.24/0.406
12.5% 50 20.90/0.567 21.69/0.535 22.27/0.531 20.83/0.538
100 21.84/0.633 22.41/0.657 23.96/0.624 21.78/0.612
25 23.57/0.586 23.17/0.547 24.25/0.520 22.86/0.549
25% 50 25.38/0.689 25.12/0.691 26.84/0.652 24.95/0.672
100 26.26/0.748 26.14/0.759 28.33/0.717 26.24/0.745
25 27.30/0.750  27.02/0.724  28.56/0.697 27.21/0.740
50% 50 28.67/0.816 28.52/0.804 30.30/0.762 28.78/0.818
100 29.40/0.843 29.21/0.849 31.61/0.815 29.78/0.856
. . ny/klogn
Sharpness of the bound, where the dominant term is LAVAL 1LY
mvLm

> The decay in terms of m is m3/2, and in terms of L is L1/2.

o PSNR gain with double m: theoretical value is 15log2 =~ 4.5dB,
empirical value is 3.99dB.

o PSNR gain with double L: theoretical value is 5log2 = 1.5dB,
empirical value is 1.42dB.



Efficiency and effectiveness of Newton-Schulz

Sampling rate 50%, L=50

Evaluation of Newton-Schulz: oo
s
» Newton-Schulz is effective: 250-
virtually identical to PGD g2s
with the exact inverse. %2”
a 17.5 -

> Newton-Schulz is necessary: 130- I St dove

exact inverse only for certain 2 E Nw{szﬁf

# iterations diverges. v 10 20 50 s 5

iteration

Time (in sec) required for exact matrix inversion and its Newton-Schulz
approximation in PGD step.

Image size 32 x32 64 x64 128 x 128
GD w/ Newton-Schulz ~ 7e-5 ~ 8e-5 ~ le-4
GD w/o Newton-Schulz ~0.3 ~12 ~52.8




Improvements provided by bagging DIPs

Sampling rate 50%, L=50

Evaluation of the bagging idea: 2-
28-
> Bagged-DIP is effective: g,
=
£
Bagged-DIP has offered 0.5—1dB over B
the three estimates it has combined. 2- — S
—— Estimate 2 (patch 64)
24- —— Estimate 3 (patch 128)
o The gain is expected to increase when .| | | [ ==l ‘
the number of estimates K increases. ° : P eraton ® *
s Sampling rate 50%
»> Bagged-DIP is more robust: 500-
27.5-
Bagged-DIP overcomes the bottleneck sso-
caused by the simple structured DIP g,
when L increases. % 200
. . . 17.5-
o The theoretical gain is = 1.5dB when L 5 )
15.0- 407 —— Bagged-DIP, L=25 == Simple DIP, L=25
doubles. Vs ~—— Bagged-DIP, L=50 -~~~ Simple DIP, L=50
125- .7 —— Bagged-DIP, L=100 ~==- Simple DIP, L=100
6 5‘ lb 1‘5 2‘0 2‘5 3‘0
iteration
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Main contributions

Theoretical contribution:

» First existing MLE-based recovery error bound ||fc—x||§ in terms of
parameters (m, n, L, k).

Algorithmic contribution:
> Bagged Deep Image Prior projection: x = gy(u)

o Bagging of independent DIPs to provide more robust and effective
projection.

» Newton Schulz matrix inversion approximation

o Efficient matrix inversion approximation in PGD to avoid exact large
matrix inversion.
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Thanks you!
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