

Bagged Deep Image Prior for Recovering Images in the Presence of Speckle Noise

Xi Chen¹ Zhewen Hou² Christopher A. Metzler³

Arian Maleki² Shirin Jalali¹

¹ Rutgers University, ² Columbia University, ³ UMD

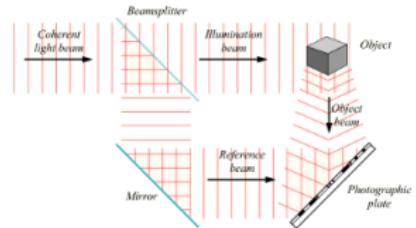
ICML, Vienna, Austria, July 2024

Coherent imaging

Various imaging systems employ coherent light:

- ▶ Optical coherence tomography (OCT)
- ▶ Synthetic aperture radar (SAR)
- ▶ Inverse synthetic aperture radar (ISAR)
- ▶ Digital holography

SAR imaging



Digital holography

One of the key challenges is **multiplicative** noise.

Coherent imaging: mathematical model

$$y = Axw + z$$

- ▶ $X = \text{diag}(x) \in \mathbb{R}^{n \times n}$, where $x \in \mathbb{R}^n$ is the desired signal.
- ▶ $w \in \mathbb{R}^n$: signal-dependent **speckle** noise.
- ▶ $A \in \mathbb{R}^{m \times n}$: known sensing matrix, $m < n$.
- ▶ $z \in \mathbb{R}^n$: additive white Gaussian noise.

Goal: Recover x from measurements $y = Axw + z$.

To improve performance: acquire multiple independent **looks**, i.e., recording x under various realizations of the noise process:

$$y_\ell = Axw_\ell + z_\ell$$

MLE of multiple compressive looks

We derive the **maximum likelihood estimator (MLE)** of multi-look compressive measurements:

$$\hat{x} = \underset{X = \text{diag}(x): x \in \mathcal{C}}{\arg \min} f_L(x)$$

$$f_L(x) = \log \det(AX^2A^T) + \frac{1}{L} \sum_{\ell=1}^L y_\ell^T (AX^2A^T)^{-1} y_\ell$$

Projected Gradient Descent for solving MLE-based recovery:

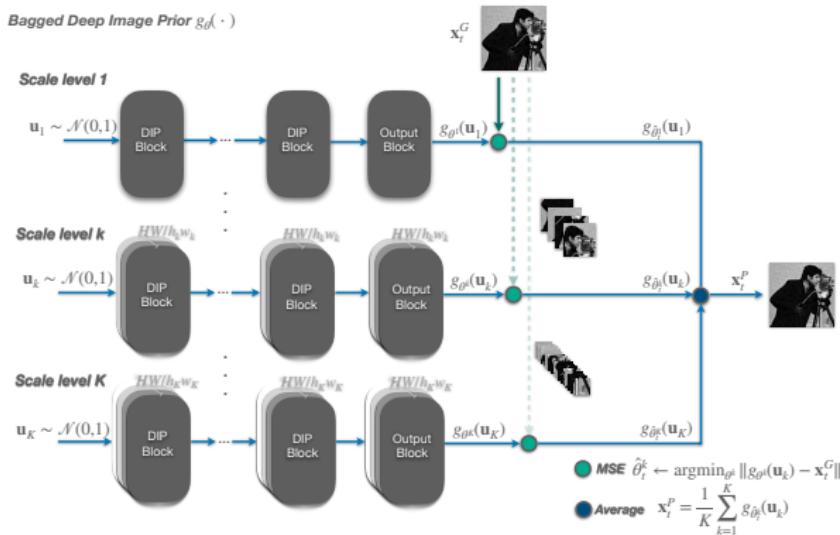
- ▶ Initialize X_0 .
- ▶ For $t = 1, 2, \dots$:
 - i. **Gradient descent**: $S_{t+1} = X_t - \mu \nabla f_L(X_t)$
 - ii. **Projection**: $X_{t+1} = \arg \min_{\theta} \|g_{\theta}(u) - S_{t+1}\|_2^2$

Bagged Deep Image Prior (Bagged-DIP)

Deep image prior (DIP) hypothesis

Choose $u \sim \mathcal{N}(0, I_d)$. $x \in \mathcal{Q}$ can be effectively expressed as $x \approx g_\theta(u)$

Bagging idea: Average over several low-bias and hopefully weakly dependent estimates (DIP outputs) yields a lower-variance estimate.



Performance of MLE as a function of m, n, L

Sensor measurements:

$$y_\ell = AXw_\ell, \quad \ell = 1, 2, \dots, L$$

Recovery method:

$$\hat{x} = \underset{x: x = g_\theta(u)}{\operatorname{argmin}} f_L(x)$$

Theorem

Suppose i.i.d. $A_{ij} \sim \mathcal{N}(0, 1)$, $m < n$ and $g_\theta(u)$, as function of $\theta \in [-1, 1]^k$, is 1-Lipschitz, we have

$$\frac{1}{n} \|\hat{x} - x\|_2^2 = O\left(\frac{\sqrt{k \log n}}{m} + \frac{n \sqrt{k \log n}}{m \sqrt{Lm}} \right).$$

with probability $1 - O(e^{-\frac{m}{2}} + e^{-\frac{Ln}{8}} + e^{-k \log n} + e^{k \log n - \frac{n}{2}})$

Newton-Schulz matrix inversion approximation

In PGD, gradient computation in each iteration t involves $m \times m$ matrix $B_t = AX_t^2A^T$ inversion:

$$\frac{\partial f_L}{\partial x_j} = 2x_j \left(a_j^T B_t^{-1} a_j - \frac{1}{\sigma_w^2 L} \sum_{\ell=1}^L (a_j^T B_t^{-1} y_\ell)^2 \right)$$

Instead of computing the matrix inverse directly, the iterations of Newton-Schulz for finding $(B_t)^{-1}$ is given by

$$M^k = M^{k-1} + M^{k-1} (I - B_t M^{k-1})$$

where M^k is the approximation of $(B_t)^{-1}$ at iteration k . It starts with $M^0 = B_{t-1}^{-1}$, which is the matrix inverse from previous GD iteration.

Empirical results align with theoretical bounds

m/n	#looks	Barbara	Peppers	House	...	Average
12.5%	25	19.91/0.443	19.70/0.385	20.15/0.377	...	19.24/0.406
	50	20.90/0.567	21.69/0.535	22.27/0.531	...	20.83/0.538
	100	21.84/0.633	22.41/0.657	23.96/0.624	...	21.78/0.612
25%	25	23.57/0.586	23.17/0.547	24.25/0.520	...	22.86/0.549
	50	25.38/0.689	25.12/0.691	26.84/0.652	...	24.95/0.672
	100	26.26/0.748	26.14/0.759	28.33/0.717	...	26.24/0.745
50%	25	27.30/0.759	27.02/0.724	28.56/0.697	...	27.21/0.740
	50	28.67/0.816	28.52/0.804	30.30/0.762	...	28.78/0.818
	100	29.40/0.843	29.21/0.849	31.61/0.815	...	29.78/0.856

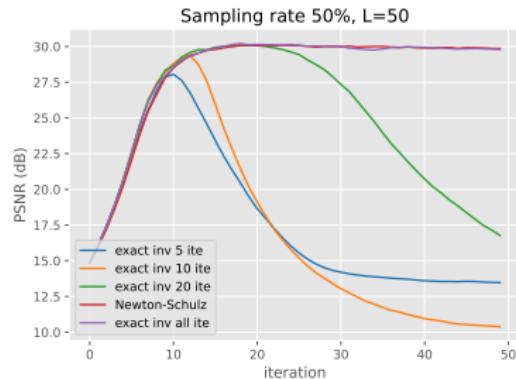
Sharpness of the bound, where the dominant term is $\frac{n\sqrt{k\log n}}{m\sqrt{Lm}}$.

- The decay in terms of m is $m^{3/2}$, and in terms of L is $L^{1/2}$.
 - PSNR gain with double m : theoretical value is $15\log 2 \approx 4.5$ dB, empirical value is 3.99dB.
 - PSNR gain with double L : theoretical value is $5\log 2 \approx 1.5$ dB, empirical value is 1.42dB.

Efficiency and effectiveness of Newton-Schulz

Evaluation of Newton-Schulz:

- ▶ Newton-Schulz is effective: virtually identical to PGD with the exact inverse.
- ▶ Newton-Schulz is necessary: exact inverse only for certain # iterations diverges.



Time (in sec) required for exact matrix inversion and its Newton-Schulz approximation in PGD step.

Image size	32×32	64×64	128×128
GD w/ Newton-Schulz	$\sim 7\text{e-}5$	$\sim 8\text{e-}5$	$\sim 1\text{e-}4$
GD w/o Newton-Schulz	~ 0.3	~ 1.2	~ 52.8

Improvements provided by bagging DIPs

Evaluation of the bagging idea:

- ▶ Bagged-DIP is effective:

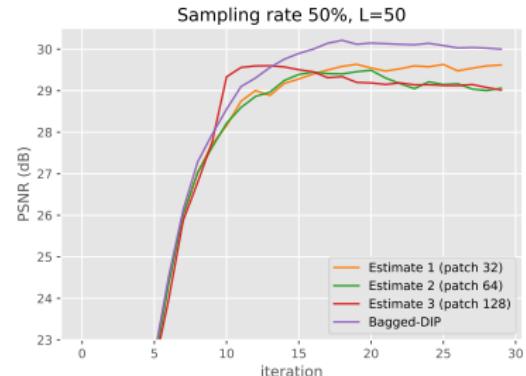
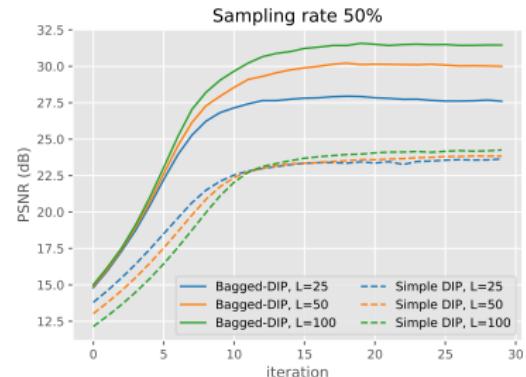
Bagged-DIP has offered 0.5 – 1dB over the three estimates it has combined.

- The gain is expected to increase when the number of estimates K increases.

- ▶ Bagged-DIP is more robust:

Bagged-DIP overcomes the bottleneck caused by the simple structured DIP when L increases.

- The theoretical gain is ≈ 1.5 dB when L doubles.



Main contributions

Theoretical contribution:

- ▶ First existing MLE-based recovery error bound $\|\hat{x} - x\|_2^2$ in terms of parameters (m, n, L, k) .

Algorithmic contribution:

- ▶ Bagged Deep Image Prior projection: $x = g_\theta(u)$
 - Bagging of independent DIPs to provide more robust and effective projection.
- ▶ Newton Schulz matrix inversion approximation
 - Efficient matrix inversion approximation in PGD to avoid exact large matrix inversion.

Thanks you!