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Coherent imaging

Various imaging systems employ coherent light:

Ï Optical coherence tomography (OCT)

Ï Synthetic aperture radar (SAR)

Ï Inverse synthetic aperture radar (ISAR)

Ï Digital holography

One of the key challenges is multiplicative noise.

SAR imaging

Digital holography
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Coherent imaging: mathematical model

y = AX w + z

Ï X = diag(x) ∈Rn×n , where x ∈Rn is the desired signal.

Ï w ∈Rn : signal-dependent speckle noise.

Ï A ∈Rm×n : known sensing matrix, m < n.

Ï z ∈Rn : additive white Gaussian noise.

Goal: Recover x from measurements y = AX w + z.

To improve performance: acquire multiple independent looks, i.e.,
recording x under various realizations of the noise process:

yℓ = AX wℓ+ zℓ
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MLE of multiple compressive looks

We derive the maximum likelihood estimator (MLE) of multi-look
compressive measurements:

x̂ = argmin
X=diag(x):x∈C

fL(x)

fL(x) = logdet(AX 2 AT )+ 1

L

L∑
ℓ=1

yT
ℓ (AX 2 AT )−1 yℓ

Projected Gradient Descent for solving MLE-based recovery:

Ï Initialize X0.
Ï For t = 1,2, . . .:

i. Gradient descent: St+1 = Xt −µ∇ fL (Xt )

ii. Projection: Xt+1 = argminθ ∥gθ(u)−St+1∥2
2
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Bagged Deep Image Prior (Bagged-DIP)

Deep image prior (DIP) hypothesis
Choose u ∼N (0, Id ). x ∈Q can be effectively expressed as x ≈ gθ(u)

Bagging idea: Average over several low-bias and hopefully weakly
dependent estimates (DIP outputs) yields a lower-variance estimate.

Bagged Deep Image Prior gθ( ⋅ )
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Performance of MLE as a function of m,n,L

Sensor measurements:
yℓ = AX wℓ, ℓ= 1,2, . . . ,L

Recovery method:
x̂ = argmin

x:x=gθ(u)
fL(x)

Theorem
Suppose i.i.d. Ai j ∼N (0,1), m < n and gθ(u), as function
of θ ∈ [−1,1]k , is 1-Lipschitz, we have

1

n
∥x̂ −x∥2

2 =O

(√
k logn

m
+ n

√
k logn

m
p

Lm

)
.

with probability 1−O(e−
m
2 +e−

Ln
8 +e−k logn +ek logn− n

2 )
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Newton-Schulz matrix inversion approximation

In PGD, gradient computation in each iteration t involves m ×m
matrix Bt = AX 2

t AT inversion:

∂ fL

∂x j
= 2x j

(
aT

j Bt
−1a j − 1

σ2
w L

L∑
ℓ=1

(
aT

j Bt
−1 yℓ

)2
)

Instead of computing the matrix inverse directly, the iterations of
Newton-Schulz for finding (Bt )−1 is given by

M k = M k−1 +M k−1(I −Bt M k−1)

where M k is the approximation of (Bt )−1 at iteration k. It starts with
M 0 = B−1

t−1, which is the matrix inverse from previous GD iteration.
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Empirical results align with theoretical bounds

m/n #looks Barbara Peppers House · · · Average

12.5%
25 19.91/0.443 19.70/0.385 20.15/0.377 · · · 19.24/0.406
50 20.90/0.567 21.69/0.535 22.27/0.531 · · · 20.83/0.538
100 21.84/0.633 22.41/0.657 23.96/0.624 · · · 21.78/0.612

25%
25 23.57/0.586 23.17/0.547 24.25/0.520 · · · 22.86/0.549
50 25.38/0.689 25.12/0.691 26.84/0.652 · · · 24.95/0.672
100 26.26/0.748 26.14/0.759 28.33/0.717 · · · 26.24/0.745

50%
25 27.30/0.759 27.02/0.724 28.56/0.697 · · · 27.21/0.740
50 28.67/0.816 28.52/0.804 30.30/0.762 · · · 28.78/0.818
100 29.40/0.843 29.21/0.849 31.61/0.815 · · · 29.78/0.856

Sharpness of the bound, where the dominant term is n
p

k logn

m
p

Lm
.

Ï The decay in terms of m is m3/2, and in terms of L is L1/2.

o PSNR gain with double m: theoretical value is 15log2 ≈ 4.5dB,
empirical value is 3.99dB.

o PSNR gain with double L: theoretical value is 5log2 ≈ 1.5dB,
empirical value is 1.42dB.
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Efficiency and effectiveness of Newton-Schulz

Evaluation of Newton-Schulz:

Ï Newton-Schulz is effective:
virtually identical to PGD
with the exact inverse.

Ï Newton-Schulz is necessary:
exact inverse only for certain
# iterations diverges. 0 10 20 30 40 50

iteration
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Time (in sec) required for exact matrix inversion and its Newton-Schulz
approximation in PGD step.

Image size 32 × 32 64 × 64 128 × 128
GD w/ Newton-Schulz ∼ 7e-5 ∼ 8e-5 ∼ 1e-4
GD w/o Newton-Schulz ∼ 0.3 ∼ 1.2 ∼ 52.8
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Improvements provided by bagging DIPs

Evaluation of the bagging idea:

Ï Bagged-DIP is effective:

Bagged-DIP has offered 0.5−1dB over
the three estimates it has combined.

o The gain is expected to increase when
the number of estimates K increases.

Ï Bagged-DIP is more robust:

Bagged-DIP overcomes the bottleneck
caused by the simple structured DIP
when L increases.

o The theoretical gain is ≈ 1.5dB when L
doubles.
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Main contributions

Theoretical contribution:

Ï First existing MLE-based recovery error bound ∥x̂ −x∥2
2 in terms of

parameters (m,n,L,k).

Algorithmic contribution:
Ï Bagged Deep Image Prior projection: x = gθ(u)

o Bagging of independent DIPs to provide more robust and effective
projection.

Ï Newton Schulz matrix inversion approximation

o Efficient matrix inversion approximation in PGD to avoid exact large
matrix inversion.
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Thanks you!
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