

Motivation

Main problems: Deep learning methods like U-Net and Neural Operators (NOs) typically achieve a relative L_2 -norm of 0.1% to 1% solving partial differential equations (PDEs), while classical numerical methods can reach arbitrary accuracy but are less time efficient.

Fig. 1: Comparison of accuracy for three approaches: U-Net, NO, NO+FCG – hybrid approach advocated in the present article.

Contributions

- Neural Operator Preconditioner: Train a neural operator as a nonlinear preconditioner for the flexible conjugate gradient (FCG) method, effective across resolutions.
- **Krylov Subspace Learning**: Use random vectors from the Krylov subspace $p_{\mathcal{K}_m}(r)$ for training; abandoning this subspace and using random right-hand sides $p_{\mathcal{K}_0}(r)$ impairs training.
- Energy Norm Loss: Introduce a novel loss function, which provides convergence guarantees and outperforms the traditional L_2 loss.

Flexible Conjugate Gradients

Algorithm 1 **Input:** $A, \mathcal{B}, f, m_{\max} > 0$, iter **Ensure:** $u_{\text{iter}}, r_{\text{iter}}$. Initialize $u_0 \leftarrow \mathcal{N}(0, 1) \in \mathbb{R}^n, r_0 \leftarrow f - Au_0 \in \mathbb{R}^n$. for i = 0 to iter -1 do $w_i \leftarrow \mathcal{B}(r_i)$ $m_i \leftarrow \min(i, \max(1, \mod(i, m_{\max} + 1)))$ $p_i \leftarrow w_i - \sum_{k=i-m_i}^{i-1} \frac{(w_i, s_k)}{(p_k, s_k)} p_k$ $s_i \leftarrow Ap_i$ $u_{i+1} \leftarrow u_i + \frac{(p_i, r_i)}{(p_i)} p_i$ $r_{i+1} \leftarrow r_i - \frac{(p_i, r_i)}{(p_i, s_i)} s_i$ end for

Neural Operators Meet Conjugate Gradients: The FCG-NO Method for Efficient PDE Solving

Yuri M. Laevsky³, Ivan Oseledets^{1,2}

¹ Artificial Intelligence Research Institute, ² Skolkovo Institute of Science and Technology, ³ Institute of Computational Mathematics and Mathematical Geophysics SB RAS, ⁴ Sberbank PJSC

integer parameters $\{m_i\}_{i=0,1,\dots}$.

If, for any i,

then

$$\frac{\left\|\mathcal{B}(r_{i}) - B^{-1}r_{i}\right\|_{B}}{\left\|B^{-1}r_{i}\right\|_{B}} \leqslant \varepsilon_{i} < 1,$$

$$\frac{\left\|u - u_{i+1}\right\|_{A}}{\left\|u - u_{i}\right\|_{A}} \leqslant \frac{\kappa\left(B^{-1}A\right) \cdot \gamma_{i} - 1}{\kappa\left(B^{-1}A\right) \cdot \gamma_{i} + 1},$$

$$\left\|u - u_{i}\right\|_{A} = \sqrt{\left(u - Au\right)}$$

where $\gamma_i = \frac{1 + \varepsilon_i}{1 - \varepsilon_i} \cdot \frac{\left(1 + \varepsilon_i^2\right)^2}{\left(1 - \varepsilon_i^2\right)}$, and $\|u\|_A = \sqrt{(u, Au)}$.

Consider boundary-value problem (BVP)

$$-\sum_{ij=1}^{2} \frac{\partial}{\partial x_{i}} \left(a(x) \frac{\partial u(x)}{\partial x_{j}} \right) = f(x)$$
$$x \in \Gamma \equiv (0, 1)^{2}, \ u(x)|_{x \in \partial \Gamma} = 0$$

where $\partial \Gamma$ is a boundary of the unit hypercube Γ , and $a(x) \ge \epsilon > 0$.

$$L_{\text{Notay}}(\theta) = \mathbb{E}_{r,a,f} \frac{\left\| \mathcal{B}(r;\theta) - A^{-1}r \right\|_{A}}{\left\| A^{-1}r \right\|_{A}},$$

Alexander Rudikov^{1,2}, Vladimir Fanaskov², Ekaterina Muravleva^{2,4},

OpenReview.net

ILU(1)	ILU(8)
69	27
110	77
185	128
69	27
110	74
177	128

Time: FCG-NO vs CG										
$\left(1 - t_{\rm FCG}/t_{\rm CG}\right) \cdot 100\%$										
	$ r_i _2/ r_0 _2$									
	Dataset	grid	10^{-3}	10^{-6}	10^{-12}					
	Poisson	32	43%	34%	9%					
		64	58%	31%	14%					
		128	74%	40%	33%					
-	Diffusion	32	22%	21%	5%					
		64	32%	32%	11%					
		128	66%	44%	42%					

Differently obtained residuals

		$r \sim p_{\mathcal{K}_m}(r)$			$r \sim p_{\mathcal{K}_0}(r)$			
		$\ r_i\ _2 / \ r_0\ _2$			$\ r_i\ _2 / \ r_0\ _2$			
Dataset	grid	10^{-3}	10^{-6}	10^{-12}	10^{-3}	10^{-6}	10^{-12}	
	32	4	9	20	4	10	21	
Poisson	64	5	14	31	5	18	67	
	128	6	20	48	7	49	153	
	32	4	9	31	5	23	56	
Diffusion	64	5	14	36	6			
	128	5	19	47	10			

