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Background

Real‐world data often exhibits a long‐tail class distribution.
Moreover, test label distribution may change across different tasks, a.k.a.
test‐agnostic long‐tail learning (Figure 1).

Figure 1. Test‐agnostic long‐tail learning.

Adjusting Model Predictions Helps Reduce Generalization Error

Denote PDS
(Y = y) and PDT

(Y = y) the label distributions of train and test
domain, respectively. We construct the “post‐adjusted” model outputs for
each sample x:

f̃y(x) = fy(x) + log
(
PDT

(Y = y)
PDS

(Y = y)

)
, y ∈ [K]. (1)

If we can accurately estimate PDT
(Y = y), we can seamlessly adapt pre‐

trained models to the specific test dataset using Eq. eq. (1).
Starting with an estimated test label distribution P̂DT

(Y ), our adapted model
f̃ induces a hypothesis:

hf̃(x) = arg max
y∈[K]

fy(x) + log

(
P̂DT

(Y = y)
PDS

(Y = y)

)

= arg max
y∈[K]

P̂ (y | x) P̂DT
(Y = y)

PDS
(Y = y)

. (2)

Theorem (Error gap between hf̃ and Bayes-optimal classifier)

Given an estimated label distribution of test data P̂DT
(Y ), a pre‐trained scoring

function f , and a hypothesis hf̃ induced by f̃ , we can bound the error gap by:

ϵT (hf̃)− ϵT (h∗) ≤
∥∥∥P̂(Y | X)− PDS

(Y | X)
∥∥∥

L1,w

+ BPE(hf)
∥∥∥P̂DT

(Y )− PDT
(Y )
∥∥∥

L1
,

where w =
(

P̂DT
(Y =1)

PDS
(Y =1),

P̂DT
(Y =2)

PDS
(Y =2), · · · ,

P̂DT
(Y =K)

PDS
(Y =K)

)
, and BPE(hf) =

maxy∈[K] PDS
(hf(X) ̸= y | Y = y) denotes balanced posterior error.

Learning Label Shift Correction

We introduce a simple estimation method that employs a shallow neural
network within the framework of generalized blackbox shift estimation:
STEP 1: Train a neural estimator by simulating various label distributions
using the training dataset. The neural network takes the predicted logits
from any pre‐trained model as input and learns to approximate the true
label distribution of these constructed subsets of training data.
STEP 2: During testing time, the neural estimator provides an estimation
of the test label distribution, which is used to adjust the pre‐trained
model’s outputs.

Algorithm 1Meta algorithm for label shift correction

Input: Training data: (XS, YS), unlabeled test data: XT , pre‐trained model f
{Sample from training data by varying class priors for Q times}

1: Initialize S̃ = ∅
2: for q = 1 to Q do
3: (X̃, Ỹ )← SampleByClassPrior(XS, YS, πq)
4: Compute class‐wise average logits by Z̃ = f (X̃) and z̃avg = 1

|X̃|

∑|X̃|
i=1 Z̃i

5: S̃ = S̃ ∪ (̃zavg, πq)
6: end for
7: Train neural estimator gθ on S̃ by minimizing L(S̃, gθ) = 1

|S̃|

∑
(z̃,πq)∈S̃

ℓ(πq, gθ(̃z))
8: Obtain predicted logits for test data using the pre‐trained model by ZT ← f (XT )
9: Apply adaptive logits clipping on ZT with the value of k set by Eq. (3) and obtain ẐT

10: Estimate test label distribution by π̃ ← gθ(̂zT ), where ẑT is the class‐wise average of ẐT

Output: Adjusted predictions ŶT = arg max(ZT + log π̃)

Overconfidence of Base Models on Tail Classes

In practice, f can be achieved by many long‐tail learning methods. Intrigu‐
ingly, we discover that these methods tend to produce overconfident logits
for tail classes while inhibiting head classes. The bias towards tail classes
can lead to undesirable label distribution predictions by neural estimator.
To rectify the bias, we introduce logit clipping, which truncates the small
predicted logits for each sample to zero. The parameter k controls how
many of the smallest logits are clipped to zero. Specifically, we determine k
based on a comparison between head and tail classes:

k = arg max
k∈K

I(πh
0 > λπt

0)Ẑh + I(πh
0 < λπt

0)Ẑt,

s.t. Ẑ = logitClip(Z, k). (3)

Theorem (Bayes error when using pseudo-label for estimation)

Given a hypothesis hf , let Chf (X)|Y ∈ RK×K denote the conditional confusion matrix, i.e.,
Chf (X)|Y (i, j) = P(hf (X) = i | Y = j). Suppose Chf (X)|Y is invertible and the test label distri‐
bution π is sampled uniformly at random, the error of Bayes function g∗ holds following inequality:

K − 1
K(M + K + 1)

≤ ϵL(g∗) ≤ K − 1
K(M + K + 1)| det(Chf (X)|Y )|σ2

min
. (4)

Remark. We can acquire sufficient information about label distribution from
the pseudo‐label distribution, even when hf exhibits inherent errors. Sup‐
pose the error gap ϵL(gθ) − ϵL(g∗) can be bounded through training gθ us‐
ing generated training set (it can be ensured by the Bayes‐risk consistency
of the training), then we can get a precise label distribution to adjust the
model when the test sample size is large enough. Build upon this, the sec‐
ond term in the upper bound of ϵT (hf̃) − ϵT (h∗) decreases. In addition,
the term 1

σ2
min| det(Chf (X)|Y )| reflects the information loss when approximating

ground‐truth label of test data by pseudo‐labels predicted by hf . It is a di‐
rect way to decline this loss through reducing BPE(hf) because we have
σmin ≥ 1− 2BPE(hf). It also indicates that we should train the scoring func‐
tion f by optimizing a class‐balanced loss instead of cross‐entropy.

Empirical Results

Our method sets new state‐of‐the‐art on commonly used long‐tail
learning datasets.
Our method can be seamlessly integrated with many existing models.
Our method can tackle both offline and online settings.

Table 1. Test accuracy (%) on CIFAR100‐LT (ResNet32), ImageNet‐LT (ResNeXt50), and
Places‐LT (ResNet152). Prior: test class distribution. ∗: Prior estimated from test data.

CIFAR100‐LT‐100 ImageNet‐LT Places‐LT

Forward Uni. Backward Forward Uni. Backward Forward Uni. Backward

Method Prior 50 5 1 5 50 50 5 1 5 50 50 5 1 5 50

Softmax 7 63.3 52.5 41.4 30.5 17.5 66.1 56.6 48.0 38.6 27.6 45.6 38.0 31.4 25.4 19.4
MiSLAS 7 58.8 53.0 46.8 40.1 32.1 61.6 56.3 51.4 46.1 39.5 40.9 39.6 38.3 36.7 34.4
LADE 7 56.0 51.0 45.6 40.0 34.0 63.4 57.4 52.3 46.8 40.7 42.8 40.8 39.2 37.6 35.7
RIDE 7 63.0 53.6 48.0 38.1 29.2 67.6 61.7 56.3 51.0 44.0 43.1 42.0 40.3 38.7 36.9
PaCo 7 62.0 57.6 52.2 47.0 40.7 66.6 62.7 58.9 54.1 48.7 ‐ ‐ ‐ ‐ ‐
SADE 7 58.4 53.1 49.4 42.6 35.0 65.5 62.0 58.8 54.7 49.8 ‐ ‐ ‐ ‐ ‐
BalPoE 7 65.1 54.8 52.0 44.6 36.1 67.6 63.3 59.8 55.7 50.8 ‐ ‐ ‐ ‐ ‐

BBSE * 63.9 48.3 20.5 30.1 24.1 63.5 54.9 48.2 42.5 36.3 43.0 36.2 30.9 26.2 20.5
RLLS * 67.2 53.8 41.7 29.3 16.4 65.2 55.0 45.3 35.2 23.6 43.4 35.1 27.9 20.9 13.5
MLLS * 65.6 54.4 46.0 38.8 33.9 60.9 52.1 46.3 41.7 39.0 41.8 35.1 30.5 26.6 22.9
LADE ✓ 62.6 52.7 45.6 41.1 41.6 65.8 57.5 52.3 48.8 49.2 46.3 41.2 39.4 39.9 43.0
SADE * 65.9 54.8 49.8 44.7 42.4 69.4 63.0 58.8 55.5 53.1 46.4 42.6 40.9 41.1 41.6
LSC (ours) * 68.1 58.4 51.9 46.0 48.3 72.3 65.6 60.5 58.2 57.3 47.7 43.7 41.4 41.5 44.4

Table 2. Test accuracy (%) by combining LSC
with existing methods on CIFAR100‐LT.

Forward Uniform Backward

Methods 50 5 1 5 50

RIDE 64.1 55.9 48.6 40.8 31.5
RIDE + LSC 66.2 56.2 48.6 41.3 33.2

PaCo 62.0 57.6 52.2 47.0 40.7
PaCo + LSC 63.3 57.7 52.2 47.6 42.0

NCL 66.4 59.8 54.3 48.0 41.4
NCL + LSC 71.5 61.1 54.3 49.8 47.9

SHIKE 67.8 60.1 53.8 46.6 38.4
SHIKE + LSC 70.3 60.5 53.8 48.8 43.2

Table 3. Test accuracy (%) on ImageNet‐LT in
the online setting with varying batch size.

Forward Uniform Backward

Methods (setting) 50 5 1 5 50

No adaptation 70.9 65.6 60.5 55.1 48.4
Offline model (ours) 72.3 65.6 60.5 58.2 57.3

SADE (B = 64) 68.7 63.2 58.8 55.2 51.9
Ours (B = 64) 71.8 65.7 60.8 56.5 52.8

SADE (B = 8) 69.7 63.1 58.8 55.5 53.0
Ours (B = 8) 71.8 65.7 60.8 56.5 52.8

SADE (B = 1) 69.7 63.1 58.5 55.2 52.9
Ours (B = 1) 71.9 65.7 60.7 56.1 52.3
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