Feature Attribution with Necessity and Sufficiency via Dual-stage Perturbation Test for Causal Explanation

Xuexin Chen¹, Ruichu Cai^{1,5}, Zhengting Huang¹, Yuxuan Zhu¹, Julien Horwood², Zhifeng Hao³, Zijian Li⁴, José Miguel Hernández-Lobato²

¹Guangdong University of Technology, Guangzhou, China ²University of Cambridge, Cambridge, UK, ³Shantou University, Shantou, China ⁵Pazhou Laboratory (Huangpu), Guangzhou, China ⁴Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE

Motivation

- To explain the ML model, feature attribution methods assign weights to input features through a perturbation test, i.e., comparing the difference in prediction under different perturbations.
- However, this perturbation test may not accurately distinguish the contributions of different features to the prediction when their changes in prediction are similar after perturbation.

Causal Model for Feature Attribution

We develop a principled causal framework to model the perturbation test in feature attribution.

First, we define the neighborhood of *d*-dimensional target input \mathbf{x}^t to be explained as the distribution of X on a dimension subset $S \subseteq \{1, ..., d\}$:

 $\widetilde{\mathbf{X}} \sim P(\mathbf{X} \mid || \mathbf{X}_{\mathbf{s}} - \mathbf{x}_{\mathbf{s}}^{t} ||_{p} \le b)$

- Second, draw a sample in the neighborhood of \mathbf{x}^t .
- Finally, use a perturbation function g to introduce perturbations by replacing features on S with the baseline value \mathbf{x}'_{s} , and use the model f to generate a new prediction Y:

$$\mathbf{Y} = f(g(\widetilde{\mathbf{X}}, \mathbf{S}, \mathbf{x}'))$$

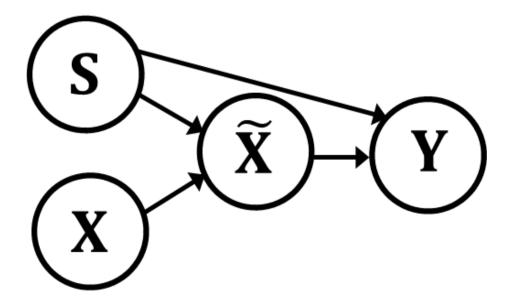


Fig. 1 Causal diagram of standard perturbation test in feature attribution.

Feature Attribution as a Problem of PNS Measurement

PS

 $A_{\mathbf{s},b}$: An event of perturbation on the subset \mathbf{s} of an input sampled from $P(\mathbf{X} \mid || \mathbf{X}_{s} - \mathbf{x}_{s}^{t} ||_{p} \leq b)$.

 $B_{s,c}$: An event representing the change in the original prediction $f(\mathbf{x})$ relative to the prediction $f(\mathbf{x}')$ of perturbed x', expressed as $|f(\mathbf{x}') - f(\mathbf{x})| > c$.

 $PNS = PN \cdot P(A_{\mathbf{s},b}, B_{\mathbf{s},c}) + PS \cdot P(\bar{A}_{\mathbf{s},b}, \bar{B}_{\mathbf{s},c})$

• To evaluate the importance w_s of the target input \mathbf{x}^t on the dimension subset s, we aim for w_s finding a neighborhood for \mathbf{x}^t where perturbing samples within this neighborhood on s have the highest probability of being necessary and sufficient causes for prediction change, and take this probability as w_s . Mathematically,

Definition (Necessary and Sufficient Attribution) Necessary and Sufficient Attribution of the input \mathbf{x}^t on the dimension subset \mathbf{s} is defined as $w_{\mathbf{s}} := \max_{b \in \mathcal{A}} PN \cdot P(A_{\mathbf{s},b}, B_{\mathbf{s},c}) + PS \cdot P(\overline{A}_{\mathbf{s},b}, \overline{B}_{\mathbf{s},c})$

Algorithm: Feature Attribution with Necessity and Sufficiency (FANS)

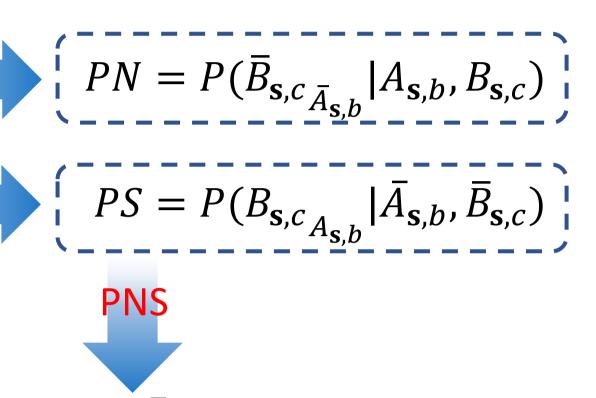
We implement our FANS to compute the Necessary and Sufficient Attribution of the input \mathbf{x}^t on the dimension subset \mathbf{s} .

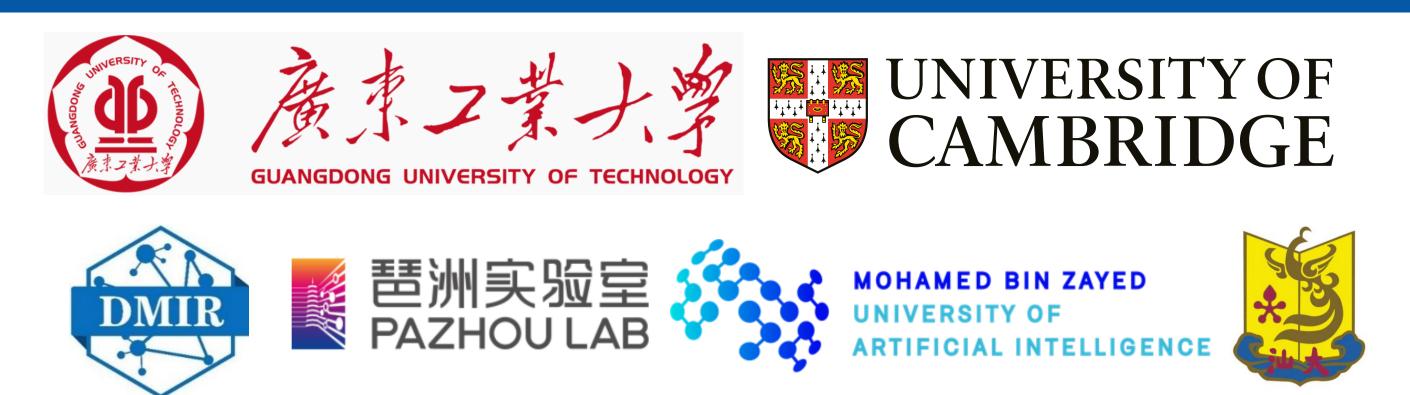
• Calculation of b, c: Boundary b is calculated using the Scott rule to ensure a small and nearly uniformly dense neighborhood. Threshold c is determined by the maximum variance of the model's predictions under low-intensity noise simulated by a Gaussian distribution.

• Calculation of PS: Design a dual-stage perturbation test to estimate PS. 1) Factual stage: Draw inputs from a distribution conditional on the fact that predictions remain unchanged after applying perturbation to the features of $\tilde{\mathbf{X}}$ on $\bar{\mathbf{s}}$. 2) Since the conditional distributions are complex, FANS employs the Sampling-Importance-Resampling to approximate these distributions using

observed samples.

3) Intervention stage: Apply perturbation to the features of \tilde{X} on s and calculate the proportion of prediction changes





Email: cairuichu@gmail.com

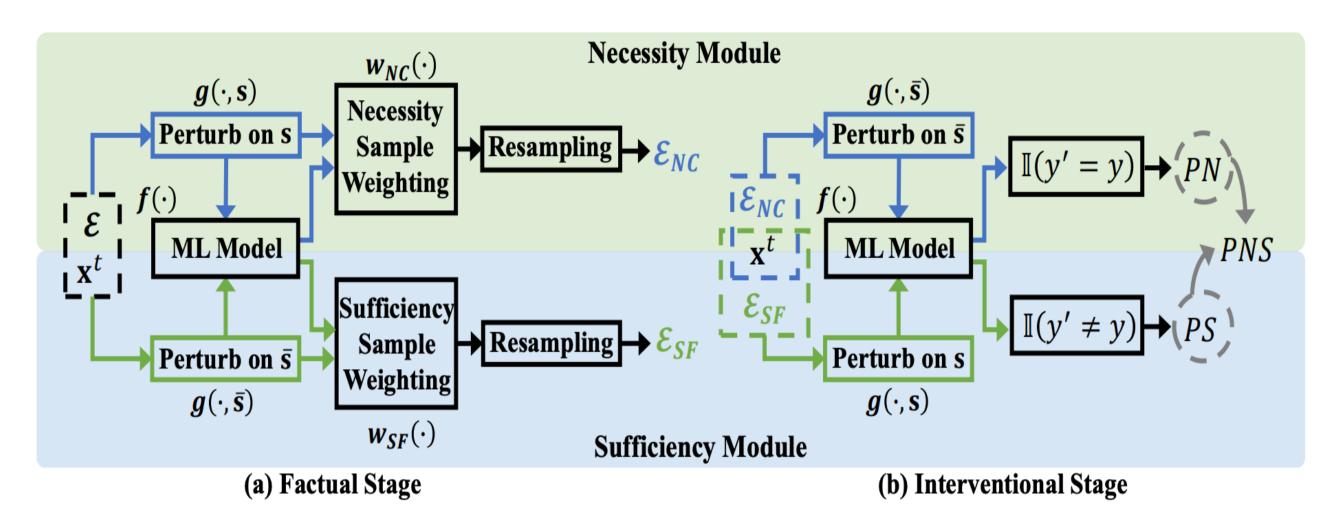


Fig. 2 Architecture of FANS, which takes the sample \mathbf{x}^t to be explained and the samples $\mathcal{E} \stackrel{iid}{\sim} P(\mathbf{X})$ as inputs, throughout the necessity and sufficiency modules to output PN and PS, and finally combine PN, PS into PNS.

robustness across various image datasets.

MNIST					Fashion-MNIST				CIFAR10			
Method	INF↓	IR↑	SPA ↑	MS↓	INF↓	IR↑	SPA↑	MS↓	INF↓	IR↑	SPA↑	MS↓
Saliency	$3.8 imes 10^4$	64.3	0.658	0.623	$1.8 imes 10^6$	25.5	0.558	0.753	1.2×10^8	54.1	0.492	0.736
IG	$1.7 imes 10^3$	73.3	<u>0.918</u>	0.683	1.7×10^4	60.8	0.612	0.806	$1.5 imes 10^5$	<u>63.5</u>	0.631	0.966
DeepLift	$\overline{2.2 \times 10^3}$	73.3	0.918	0.679	$\overline{8.2 \times 10^4}$	59.8	0.610	0.797	$1.9 imes 10^5$	62.7	0.631	0.959
IDGI	$2.0 imes 10^3$	64.7	0.837	0.578	2.6×10^4	58.2	0.593	0.781	$2.3 imes 10^4$	19.5	0.632	0.854
GradShap	2.2×10^3	<u>73.3</u>	<u>0.918</u>	0.673	$2.5 imes 10^4$	59.2	<u>0.614</u>	0.874	$2.3 imes 10^5$	56.5	0.630	1.000
LIME	$6.6 imes 10^5$	67.9	0.808	0.899	$2.5 imes 10^8$	28.6	0.533	0.884	1.1×10^9	2.1	0.512	1.032
Occlusion	$5.7 imes 10^5$	69.2	0.802	0.538	2.8×10^7	58.4	0.505	0.660	$2.1 imes 10^8$	51.4	0.507	0.857
FeatAblation	$1.7 imes 10^3$	72.8	0.917	0.669	$5.5 imes 10^4$	45.4	0.572	0.791	$1.1 imes 10^6$	36.8	0.619	0.983
MP	$8.5 imes 10^5$	70.3	0.421	0.904	2.9×10^7	20.1	0.227	0.453	$5.1 imes 10^8$	16.3	0.476	0.887
CIMI	1.7×10^4	12.9	0.901	0.548	$2.6 imes 10^4$	54.8	0.589	0.827	$6.0 imes 10^6$	21.1	0.589	<u>0.615</u>
FANS	$9.0\times\mathbf{10^2}$	74.5	0.924	0.463	$1.2 imes \mathbf{10^4}$	63.1	0.630	0.586	$1.7\times\mathbf{10^4}$	63.6	0.634	0.578

- predictions.
- neighborhoods,
- test to implement our method.

Experiment

• Performance of FANS. Table below shows FANS consistently outperforms all baselines in faithfulness, sparsity, and

Conclusion

• We propose a novel attribution method called FANS that can better distinguish the contribution of feature subsets to

FANS defines a novel attribution as the highest probability in the Probabilities of being a Necessity and Sufficiency (PNS) cause of the prediction change for perturbing samples in different

• We develop a dual-stage (factual and interventional) perturbation