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Background

Sharpness-Aware Minimization (SAM)
Flat minima often imply better generalization(Chatterji et al., 2020; Jiang et al., 2020).
SAM (Foret et al., 2021) is designed to locate flat minima:

min max L(w + €),
wER™ e:|[e]|<p

where w is the model parameter, € is the perturbation whose magnitude is
bounded p.



Background

Update Scheme for Sharpness-Aware Minimization (SAM)

To solve:

First-order approximation on the objective, the optimal €
pVw L(w)

for the maximization sub-problem: €*(w) = oLl

Then, the update scheme is:
Wy = W¢—1 — nth_lL(wt—l + et—l)a €1 =€ (’wt—l)

However, SAM is easy to be trapped into saddle points (Kim et al., 2023; Compagnoni et al.,

2023).



Background: Extra-Gradient and Optimistic Gradient

Consider the minimax problem: min max f(xy y)
rxeR™ ycR™

Let 2 := [z,y]" and F(2) := [V, f(z,y), =V, f(z,y)]
Gradient Descent-Ascent (GDA) : z:11 = z: — n:F" (2;) Unstability (Gidel et al., 2019).

To ensure stability:

Zt = 2t — e F (zt) Extra extrapolation step,

Extra-Gradient (Korpelevich, 1976): _ i
(Korp ) 21 = 2 — i F (%) looking one step ahead

Optimistic-Gradient (Popov, 1980): 2t = Zt—1 — :£"(Z-1) Reuse gradient at t-1,
zii1 = 2zt — M (Z) Reduce computation



Method

To address the issue that SAM is easy to be trapped saddle points,

Direct EG and OG to SAM objective: ~ min max L(w + €),
wER™ e:|e||<p

EG . 0G

& =T (et 1+ Ve  L(wi1+€1)i &=T(e1+nVe, Lt 1+&-1)),

’ﬁ)t = W¢_1 — ntv'wt_lL (wt—l + et—l) ) ' ﬁ)t — W1 — ntvﬁit—lL (ﬁ}t—l + ét_l) ?
€ =11 (Et—l + vétL (ﬁ’t + ét)) e, =11 (Et—l + Vf—:tL (ﬁ?t + ét))
w; = Wi—1 — NV, L (W + &) . Wy = w1 — NV, L (W + &) .

I1(-) is projection function.

However, directly using both EG and OG which converges at a O(T %),
which is much slower than the O(1/v/T) rate of SAM.



Method

A faster convergence by using approximated closed form solution for the max problem.

Lookahead-SAM:

€; = € (wy_1) +— closed-form of € w.r.t. w.
Wy = wy_1 — NV, , L (w;_1 + € ) +— Lookahead step.
Wi = W1 — ntvfa,tL (’ﬁ)t -+ ét) <+«— Update w using the w; with pertubation.
Intuition: Reduces the perturbation.

W = Wi—1 — NV, L (Wt + &) }

Wy = Wi—1 — Uéth_lL (w1 + €)

As larger perturbations is prone to being trapped in saddle points (Kim et al., 2023;
Compagnoni et al., 2023).



Method

Optimistic Lookahead-SAM (Opt-SAM):

Lookahead-SAM to further save computation time by reuse gradient

Reduces the perturbation.

~ - b S

€ = € (wy_1) € = € (wi_1) 1

~ / 2\ =
Wy = W1 = NNV, L (Wit + &)1 oy —w, y — )V, L(w 1+ & 1),
w; = Wy 1 — NV, L (’ﬁJt + ét) wy = w1 — NV, L (Wi + €)

However, Opt-SAM still has to compute the gradient in each iteration, and can be expensive.



Background: AE-SAM (Jiang et al., 2023)

A SAM variant to reduce computation.

Empirically, |VL (w,)|* ~ N (i, 0v)

pe = 01+ (1= 0) |VL (w,) |

2 2 2 2
of = o7y + (1= 6) (IVL (we)|* = )

<«— Exponential Moving Average

IVL (wy)||* > e + c:or - SAM is chosen; Otherwise ERM.

t t

Cy = T/ﬁ + (1 — ?) Ko, k1 and Ko are two constants.



Method: Adaptive Lookahead-SAM

Use AE-SAM technique to help reduce computation.

Algorithm 2: Adaptive Optimistic SAM (AO-SAM).

Input: Training set S, number of epochs 7', batch size
b, wy, €9 = 0, Ho = 0,and og = e 10,

1 fort=1,2,...,T do
2 sample a minibatch I; from S with size b;
1 .
15 | 2 > _ 3| 8 =13 2cr, Vwli(w);
It ” b Z?Glt thfz(wt)|| . Mt. T o .We use Opt-SAM. 4 update p; and o; as in AE-SAM (5);
Otherwise, SGD (i.e., ERM) is used instead. o 11 0
s | if |15 > ier, Vw li(we)[|* > pe + cio4 then
p & — Ptit_l%EieIt bi(we—1)
B ”th_l % Zie]t Li(we—1)l’
7 Wy = W1 — N&—1 3
8 g — v'ﬁ;t [% Zie[t gl(wt_i-ét)]’
9 | Wi =wi-1 — N8t

10 return wr.




Analysis: Region of attraction (ROA)

ROA (informal): The Region of Attraction is all the starting points from which the system will
eventually settle into this stable state.

Objective: min, w ' Hw

ODE SAM: :
Hw :
dw, = —H (wT+ P d )dT : _ o pHwW - pHw;
[Hu| - dwe = (e (e ) 4 R ar
ROA for ODE SAM: ! ROA for ODE Lookahead-SAM:

1
)\min

wT p Z _M E / .
Amin wo | (147 Amin) p >

Amin is the minimum eigenvalue of H.

wHwAumAmn—n}



Analysis: Region of attraction (ROA)

ROA for ODE SAM: ROA for ODE Lookahead-SAM:
Hw- 1
fuw, [ el fooc [ 0 2 £ Hw0 0w = 1) |
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ROAs for SAM and Lookahead-SAM at saddle point



Analysis: Convergence Analysis

Theorem (Informal): under mild assumptions, both Lookead-SAM, Opt-
SAM, and AO-SAM satisfies

%ZT:EHVWL(W)HQ =0 (%>

t=0

Lookahead-SAM, Opt-SAM and AO-SAM have the same O(ﬁ) conver-
gence rate as SAM and its variant AESAM.



Experiments: Comparison with EG,0G and the proposed methods

Table 1: Testing accuracy and fraction of SAM updates
(%SAM) on CIFAR-10 using ResNet-18. The best accuracy

is in bold.

accuracy %SAM
SAM 96.52 +0.12 100.0 0.0
EG 96.45 +0.05  200.0 +0.0
oG 96.52 +0.03 100.0 +o0.0
Lookahead-SAM  96.81 +0.01  150.0 +0.0
Opt-SAM 96.79 +£0.02  100.0 0.0
AO-SAM 96.82 +0.04 61.1 +0.0

Table 2: Testing accuracy and fraction of SAM updates
(%SAM) on CIFAR-100 using ResNet-18. The best accu-
racy is in bold.

accuracy %SAM
SAM 80.17 £0.05  100.0 +0.0
EG 79.91 +0.16  200.0 +0.0
oG 79.92 +£0.08  100.0 +0.0
Lookahead-SAM  80.79 +0.13 150.0 +0.0
Opt-SAM 80.76 £0.15  100.0 0.0
AO-SAM 80.70 +0.14 61.2 +0.0

Lookahead-SAM has the highest accuracy on CIFAR-100 and the second highest on CIFAR-
10, it also has a higher %SAM.
Opt-SAM is as fast as SAM w.r.t. %SAM but is more accurate.
AO-SAM is as accurate as Opt-SAM, but is even faster.



Experiments: Comparison with SAM variants in CIFAR

Table 3: Testing accuracies (mean and standard deviation) and fractions of SAM updates on CIFAR-10 and CIFAR-100.
Methods with similar %SAM’s are grouped together for easier comparison. Results of ERM, SAM, and ESAM are from
(Jiang et all,2023), while the other baseline results are obtained with the corresponding authors’ codes. The best accuracy is
in bold. * means the improvements over the second-best baseline are statistically significant (achieving a p-value of less
than 0.05 in t-test).

CIFAR-10 CIFAR-100
Accuracy % SAM Accuracy % SAM
ERM 95.41 +0.03 0.0 +0.0 78.17 +0.05 0.0 +0.0
SAM (Foret et all, 2021) 96.52 +0.12 100.0 0.0 80.17 +0.15  100.0 0.0
ESAM (Du et all, 20222) 96.56 +0.08  100.0 +0.0 80.41 +0.10  100.0 +0.0
%  ASAM (Kwonetal,, 2021)  96.55 +0.14  100.0 +0.0 80.52 +0.13  100.0 +0.0
& GSAM (Zhuang et al|,2022) ~ 96.70 0.00  100.0 +0.0 80.48 £0.11  100.0 +0.0
< Opt-SAM 96.79 +0.02  100.0 +0.0 80.76" +0.15 100.0 +0.0
V
= SS-SAM (Zhad, 2022) 96.64 +0.02  60.0 +0.0 80.49 +0.10  60.0 +0.0
AE-SAM (Jiang et al|, 2023)  96.66 +0.02  61.3 +0.1 79.96 +0.08  61.3 +0.0
AO-SAM 96.82* +0.04 61.1 0.0 80.70 +0.14 61.2 0.0
ERM 96.34 +0.12 0.0 +0.0 81.56 +0.14 0.0 +0.0
SAM (Foret et al,,[2021) 97.27 +0.11  100.0 +0.0 83.42 +0.05  100.0 0.0
S ESAM (Du et al}, 20224) 97.29 +0.11  100.0 0.0 84.51 x0.02  100.0 0.0
&  ASAM (Kwon et al,2021)  97.38 +0.09  100.0 +0.0 84.48 +0.10  100.0 +0.0
% GSAM (Zhuang et al/,2022) 97.44 +o0.07  100.0 0.0 84.50 012  100.0 +0.0
% Opt-SAM 97.56* +0.03 100.0 +o0.0 84.74 +0.02  100.0 +0.0
;§ SS-SAM (Zhag, 2022) 97.32 +0.03  60.0 0.0 84.39 +0.04  60.0 0.0
= AE-SAM (Jiangetal|,2023)  97.37 +0.08  61.3 +0.0 84.23 +0.08  61.3 +0.0
AO-SAM 97.49 +o0.02 61.2 +0.0 84.80* +0.11  61.2 +0.0

Opt-SAM

and AO-SAM are consistently
more accurate than SAM and
its variants on all datasets
and backbones



Experiments: Comparison with SAM variants in CIFAR

CIFAR-10 CIFAR-100

Accuracy % SAM Accuracy % SAM

ERM 96.62 +o.10 0.0 +o0.0 81.89 +o0.15 0.0 +o.0
SAM (Foret et all, 2021) 97.30 +0.10  100.0 +0.0 84.46 +0.05  100.0 0.0
S ESAM (Du et al|, 20224) 97.81 +0.01  100.0 0.0 85.56 +0.05  100.0 +0.0
<  ASAM (Kwonetal,2021)  97.71+009  100.0 0.0 85.55 +0.11  100.0 +0.0
S GSAM (Zhuang et al|,[2022)  97.74 +0.02  100.0 0.0 85.25 £ 0.11  100.0 +0.0
7-§ Opt-SAM 97.79 +0.04  100.0 +o0.0 85.74* +o0.14 100.0 +o0.0
S SS-SAM (Zhad, [2022) 97.62 +0.03  60.0 +0.0 85.41 +0.11  60.0 +0.0
S AE-SAM (Jiang et al|, 2023)  97.52 +0.07  61.4 0.1 85.43 +0.08  61.4 +0.1
AO-SAM 97.87* +0.02 61.2 +0.0 85.60 +0.07 61.2 +0.12

ERM 86.69 +0.11 0.0 +o0.0 62.42 +0.22 0.0 +o0.0
SAM (Foret et all, 2021) 87.37 +0.09  100.0 +0.0 63.23 0.25  100.0 +0.0
« ESAM (Du et all, 20224) 84.27 +0.11  100.0 +0.0 62.11 +0.15  100.0 +0.0
= ASAM (Kwonetal,2021)  82.25+0.41  100.0 0.0 63.26 0.1 100.0 +0.0
&  GSAM (Zhuang et al,2022)  83.62 £ 0.11  100.0 +0.0 59.82 +0.12  100.0 +0.0
= Opt-SAM 87.91 +0.26  100.0 +o0.0 63.78 +0.22  100.0 +o0.0
SS-SAM (Zhao, [2022) 83.36 £ 0.04  60.0 +0.0 54.04 +5.09  60.0 +0.0
AE-SAM (Jiang et al,[2023)  77.37 +0.07  61.4 +0.0 57.13 +2.87  61.3 +0.0
AO-SAM 88.27* +0.12  61.3 +0.0 64.45* +0.23 61.2 +0.0

Opt-SAM

and AO-SAM are
consistently more
accurate than SAM and
its variants on all
datasets and backbones



Experiments: Comparison with SAM variants in CIFAR with noise

Table 8: Testing accuracies and fractions of SAM updates on CIFAR-10 with different levels of label noise. Results of ERM,
SAM, and ESAM with ResNet-18 and ResNet-32 are from (Jiang et all, 2023) (standard derivations for some baselines are
not provided in (Jiang et all, 2023)), while the other baseline results are obtained with the authors’ codes. The best accuracy

is in bold.
noise = 20% noise = 40% noise = 60% noise = 80%
accuracy %SAM accuracy %SAM accuracy %SAM accuracy %SAM
ERM 87.92 0.0 70.82 0.0 49.61 0.0 28.23 0.0
SAM (Foret et al., [2021) 94.80 100.0 91.50 100.0 88.15 100.0 77.40 100.0
ESAM (Du et al, [20224) 94.19 100.0 91.46 100.0 81.30 100.0 15.00 100.0
°~|° ASAM (Kwon et al.,[2021) 91.17 +0.19 100.0 87.38 +0.61 100.0 83.22 +0.41 100.0 71.03 +0.88 100.0
§ GSAM (Zhuang et al;,[2022) 94.54 +0.18 100.0 91.72 +0.05 100.0 87.70 +0.02 100.0 24.70 +10.69 100.0
é’, Opt-SAM 95.12 +o0.12 100.0 92.16 +0.35 100.0 88.45 +0.53 100.0 7747 +0.65 100.0
SS-SAM (Zhao, [2022) 94.61 +0.16 60.0 91.81 +0.13 60.0 78.67 +0.42 60.0 62.94 +1.01  60.0
AE-SAM (Jiang et al},2023) 92.13 +0.14 61.4 86.02 +0.62 61.4 75.95 +1.30 61.4 67.28 +1.66 61.4
AO-SAM 95.02 £0.04 61.2 92.62 +0.18 61.3 89.36 +o0.12 61.2 78.12 +0.38 61.2
ERM 87.43 0.0 70.82 0.0 46.26 0.0 29.00 0.0
SAM (Foret et al., [2021) 95.08 100.0 91.01 100.0 88.90 100.0 77.32 100.0
ESAM (Du et al,,[20224) 93.42 100.0 91.63 100.0 82.73 100.0 10.09 100.0
~Np ASAM (Kwon et al,2021) 92.04 +0.09 100.0 88.83 +£0.11  100.0 83.90 +0.56 100.0 75.64 +0.75 100.0
§ GSAM (Zhuang et al;,[2022) 94.12 +0.09 100.0 91.74 +0.05 100.0 89.23 +0.06 100.0 31.16 +2.77 100.0
5, Opt-SAM 95.25 +0.04 100.0 92.11 +o.07 100.0 88.36 +0.22 100.0 77.61 +0.39 100.0
SS-SAM (Zhao, [2022) 95.03 £0.23 60.0 90.59 +0.30 60.0 87.22 + 046 60.0 48.89 +1.02 60.0
AE-SAM (Jiang et al),2023) 92.04 +o0.27 61.3 86.83 +0.49 61.3 73.90 +0.44 61.2 67.64 +1.3¢ 61.3
AO-SAM 95.32 +o0.12 61.2 91.73 +0.65 61.2 89.40 +0.44 61.2 77.78 +0.8¢ 61.2

AO-SAM and Opt-
SAM outperform all
baselines at all
label noise ratios.



Experiments: Comparison with SAM variants in ImageNet

Table 7: Testing accuracies and fractions of SAM updates
(%SAM) on ImageNet. Results of ERM, SAM and ESAM

on ResNet-50 are from (Jiang et all, 2023), ASAM is from
(Kwon et all,2021), GSAM is from (Zhuang et all, 2022),

while the other baseline results are obtained by the corre-
sponding authors’ codes. The best accuracy is in bold.
means that the original papers do not provide standard devi-

ation. We do not report ASAM on ResNet-101 and Vit-S/32,

AO-SAM again outperforms all the baselines.

and GSAM on Vit-S/32 because they are not provided in the Accuracy

original papers.

Accuracy

ERM 77.11 £0.14

SAM 77.47 +£0.12
ESAM 77.25+0.75
ASAM 76.63 +0.18
GSAM 77.21

ResNet-50

AO-SAM 77.68 £ 0.04

%SAM
ERM 77.801 0.0
S  sAM 78.90" 100.0
%SAM § ESAM 79.091 100.0
0.0 g GSAM 78.9f 100.0
R
100.0 AO-SAM  79.38 + 0.10 61.2
100.0 ~ ERM 67.0 0.0
\g)
100.0 S SAM 69.11 100.0
100.0 S ESAM 66.11 100.0
61.1 AO-SAM  69.38 + 0.24 61.6




Experiments: Flat Minima
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Figure 4: Hessian spectra obtained by ERM, SAM, Lookahead-SAM, Opt-SAM, and AO-SAM on CIFAR-10 with ResNetI8.

Table 5: Eigenvalues of the Hessian on CIFAR-10 with

ResNet18 backbone. The smallest is in bold. The eigenvalues of Lookahead-SAM, Opt-

SAM, and AO-SAM are smaller than ERM and

At AL/Xs SAM.
ERM 88.8 3.3
SAM 29.6 3.3 This indicates the loss landscapes at the
Lookahead-SAM  10.2 1.8 d soluti £ th SAM .
Opt-SAM 131 2.0 converged solutions of these variants
AO-SAM 11.1 1.8 are flatter.




Conclusion

1. Incorporate the idea of extrapolation into SAM to gain more information about the
landscape, and thus help convergence.

2. Develop a method that combines SAM’s approximate maximizer to its inner
optimization subproblem with lookahead.

3. Provide theoretical guarantees that they converge to stationary points at the same
rate as SAM, and are not easily trapped at saddle points..



