

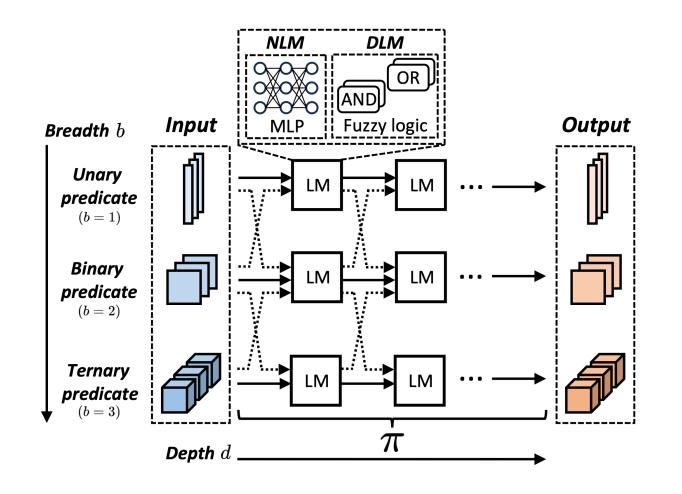
Improving Neural Logic Machines via Failure Reflection

Zhiming Li *, Yushi Cao*, Yan Zheng, Xu Liu, Bozhi Wu, Tianlin Li, Xiufeng Xu, Junzhe Jiang, Yon Shin Teo, Shang-wei Lin, Yang Liu
Nanyang Technological University, Tianjin University, Hong Kong Polytechnic University, Continental Automotive Singapore Pte. Ltd.

Background – Inductive Logic Programming

• A programming paradigm based on first-order logic

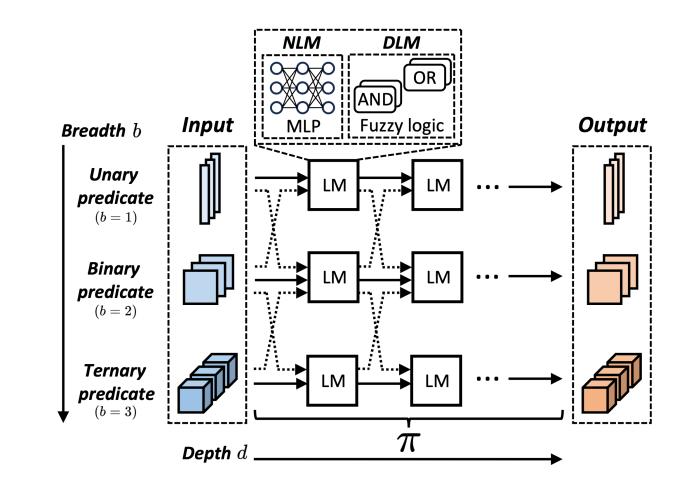
Background – Inductive Logic Programming


• A programming paradigm based on first-order logic • Key Concepts: HasSister(x) $\leftarrow \exists y, z, \texttt{IsDaughter}(z, y) \land \texttt{IsMother}(x, z)$ • Predicate • Variable. • Atom- $\mathbf{B} = \{ \texttt{IsMother}(C, B), \texttt{IsMother}(D, B), \texttt{IsDaughter}(B, C), \}$ • Rule $IsDaughter(B, D), IsDaughter(A, C), IsDaughter(A, D) \}$ • Premise $\rho = \{ \mathsf{HasSister}(C), \mathsf{HasSister}(D) \}$ • Positive examples • Negative examples $\eta = \{ \text{HasSister}(A), \text{HasSister}(B) \}.$

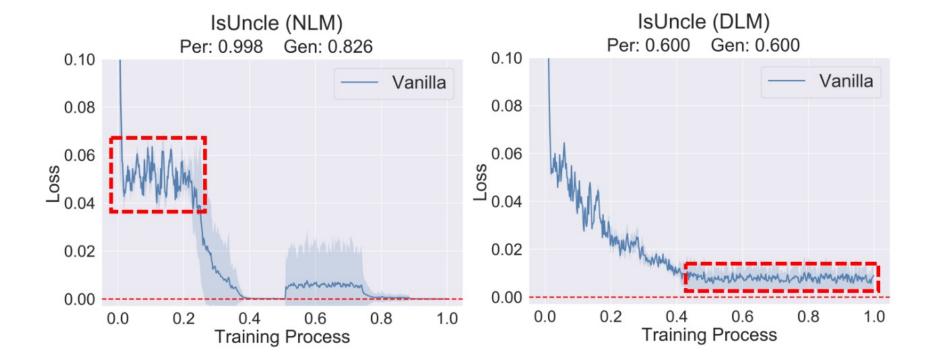
Background – Neural Logic Machines

• Using neural network to approximate logic operations

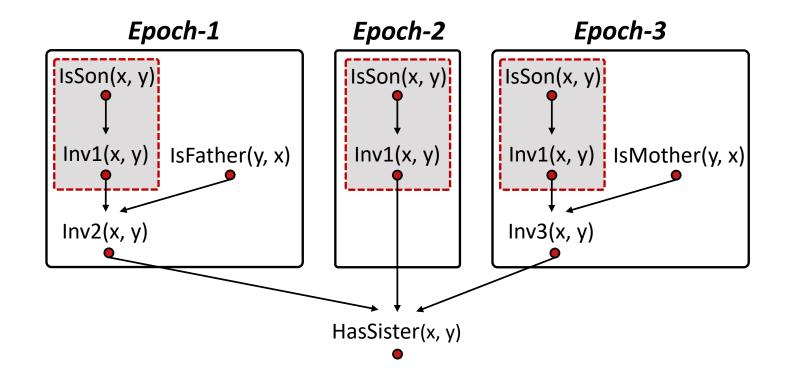
```
\forall x_{b+1} \ q \ (x_1, x_2, \cdots, x_b, x_{b+1}) \leftarrow p \ (x_1, x_2, \cdots, x_b)
```

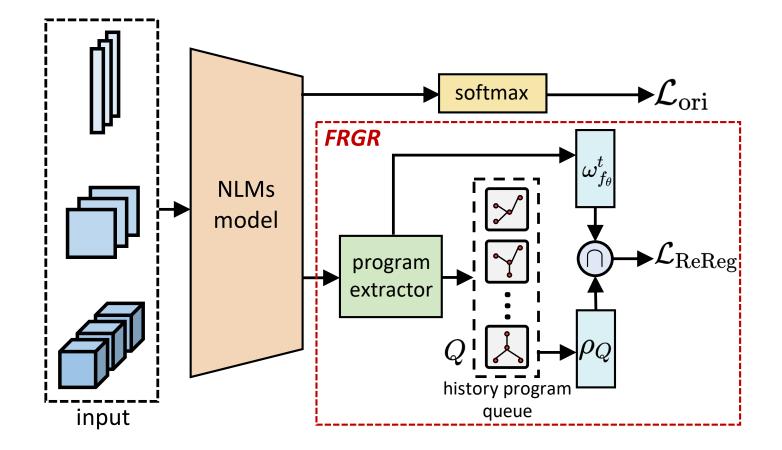

• DLM is a variant of NLM, replaces the MLP with fuzzy logic

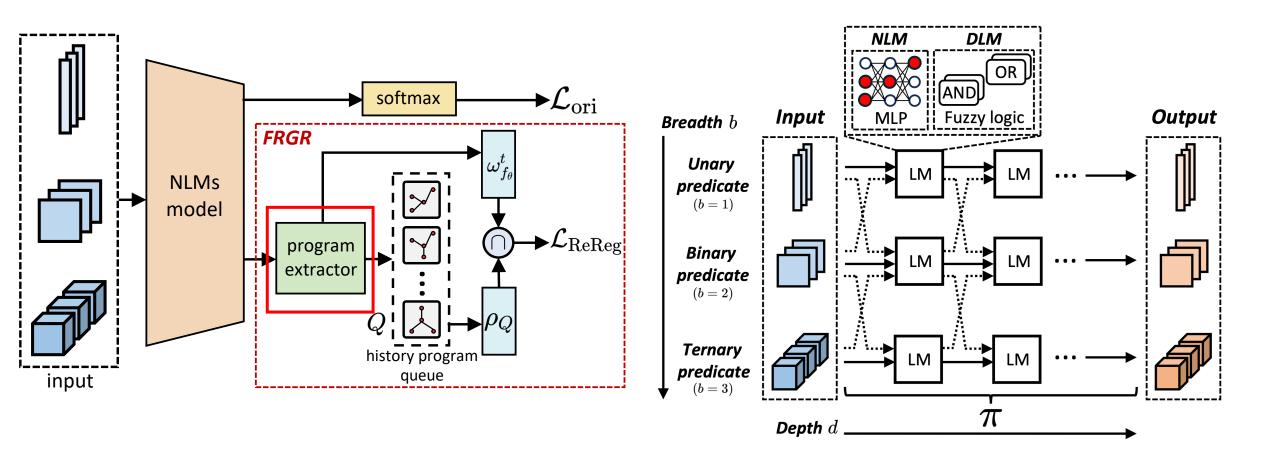
Background – Neural Logic Machines

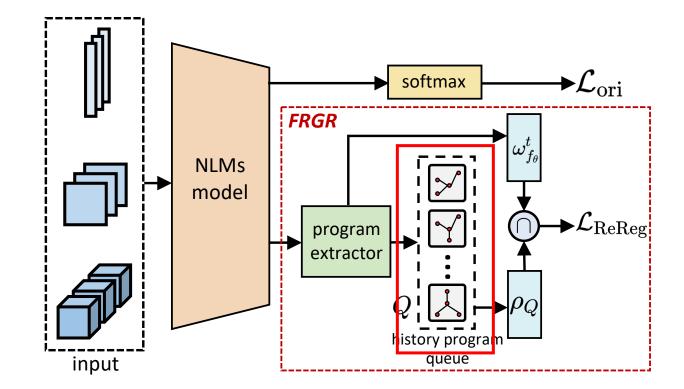

• Taking truth value tensor as input and output

	Output ()									
		Α	В	С	D					
		[0]	0	1	1]				
	I	las	Sis	te	r(a	;)				
Input	\mathcal{I}^{-}		Î	π	-					
Unary p	redic	ate								
A B	С	D			A	В	С	D		
[0 0	1	1]			[0]	0	1	1]		
HasFa	${\tt HasFather}(x) \qquad {\tt HasMother}(x)$									
Binary p	Binary predicate									
A	B C	C D			A	В	С	D		
A [0	0 0	0]	A	0	0	1	1]		
B 0 C 0	0 0	0		в	0	0	$egin{array}{c} 1 \\ 0 \end{array}$	1		
c 0	1 0	0 0		c	0	0	0	0		
D_0	1 0			D	0	0	0	0		
IsMot	${\tt IsMother}(x,y) \ {\tt IsDaughter}(x,y)$									

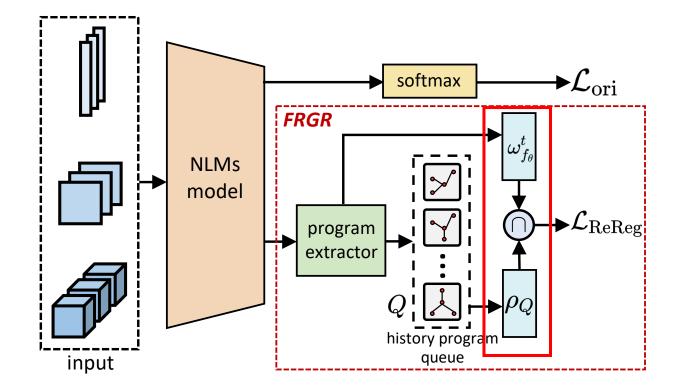


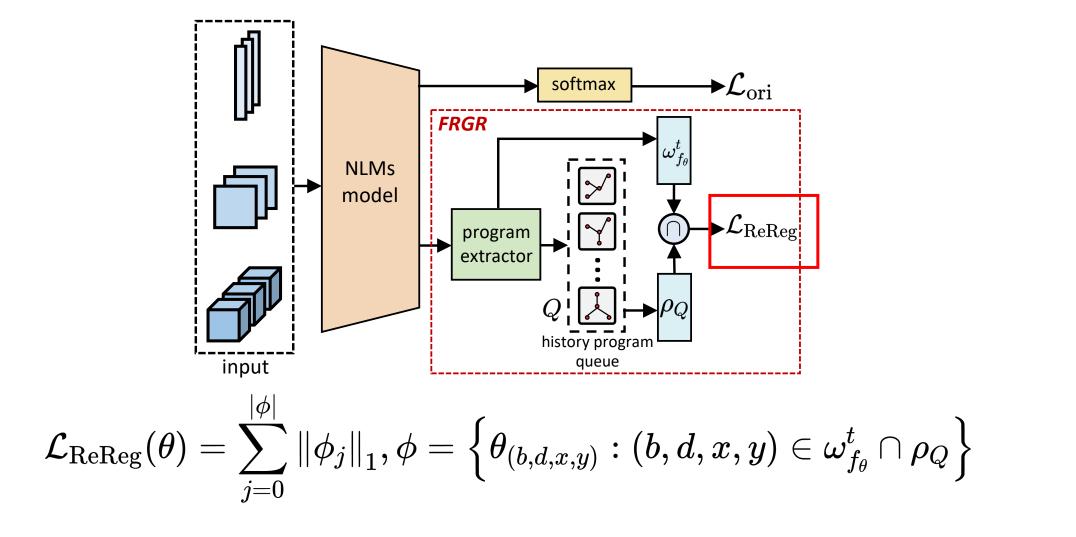

Motivation

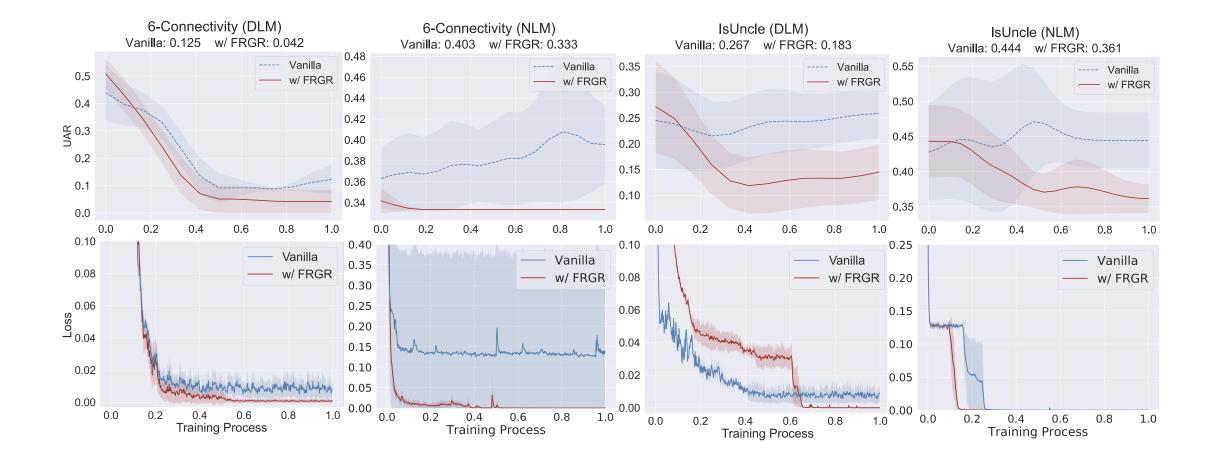

- Training approaches are far from perfect
- NLMs would repeat similar mistakes
- Oscillating for a long while



Methodology – An intuitive example






 $Q^{t+1} = ext{enqueue}(Q^t, \omega_{f_ heta}^t), \exists (I, O) \in u: f_ heta^t(I)
eq O$

 $\rho_Q = \left\{ J \subseteq S_{f_{\theta}} \mid | \left\{ \omega_{f_{\theta}}^t \in Q \mid J \subseteq \omega_{f_{\theta}}^t \right\} \mid > \text{minsup} \right\}$

Results – Motivation Validation & Repetition Mitigation

Results – Data-Rich Setting

Task	NLM / NLM w/ FRGR (Ours)				DLM / DLM w/ FRGR (Ours)			
Family Tree	Grad-ratio (%)↑	n=20 (%)↑	n=100 (%)↑	# Epochs↓	Grad-ratio (%)↑	n=20 (%)↑	n=100 (%)↑	# Epochs↓
HasFather	100.00/100.00	100.00/100.00	100.00/100.00	5.90/6.00	100.00/100.00	100.00/100.00	100.00/100.00	22.00/23.6
HasSister	100.00/100.00	100.00/100.00	100.00/100.00	18.09/ <mark>17.64</mark>	100.00/100.00	100.00/100.00	100.00/100.00	68.80/ <mark>67.20</mark>
IsGrandparent	100.00/100.00	100.00/100.00	100.00/100.00	96.20/ <mark>55.80</mark>	100.00/100.00	100.00/100.00	100.00/100.00	50.40 /51.20
IsUncle	90.00/ <mark>100.00</mark>	99.76/ <mark>100.00</mark>	82.60/100.00	143.70/ <mark>78.40</mark>	60.00/ <mark>80.00</mark>	60.00/ <mark>80.00</mark>	60.00/ <mark>80.00</mark>	319.20/278.40
IsMGUncle	70.00/100.00	97.16/ <mark>99.96</mark>	10.04/ <mark>60.44</mark>	203.88/175.20	40.00/ <mark>60.00</mark>	48.1/58.20	20.00/40.00	459.20/ <mark>423.80</mark>
Graph Reasoning	Grad-ratio (%)↑	n=10 (%)↑	n=20 (%)↑	# Epochs↓	Grad-ratio (%)↑	n=10 (%)↑	n=20 (%)↑	# Epochs↓
1-OutDegree	100.00/100.00	100.00/100.00	100.00/100.00	14.30/17.00	100.00/100.00	100.00/100.00	100.00/100.00	46.20/50.00
2-OutDegree	90.00/ <mark>100.00</mark>	96.52/100.00	90.80/ <mark>100.00</mark>	77.9/13.40	100.00/100.00	100.00/100.00	100.00/100.00	81.60/ <mark>73.60</mark>
4-Connectivity	100.00/100.00	100.00/100.00	100.00/100.00	16.80/20.50	100.00/100.00	100.00/100.00	100.00/100.00	90.40/ <mark>87.40</mark>
6-Connectivity	60.00/ <mark>100.00</mark>	74.40/100.00	69.20/ <mark>100.00</mark>	278.00/41.60	80.00/80.00	86.90/ <mark>95.40</mark>	53.28/ <mark>90.10</mark>	282.40/ <mark>230.80</mark>
Reinforcement Learning	Grad-ratio (%)↑	n=10 (%)↑	n=50 (%)↑	# Epochs↓	Grad-ratio (%)↑	n=10 (%)↑	n=50 (%)↑	# Epochs↓
Sorting	100.00/100.00	100.00/100.00	100.00/100.00	24.00/22.20	-	-	-	-
Path	50.00/60.00	99.55/ <mark>100.00</mark>	99.95/ <mark>100.00</mark>	311.00/305.20	-	-	-	-
BlocksWorld	40.00/60.00	<mark>97.11/96.5</mark> 9	76.89/ <mark>83.90</mark>	390.11/386.67	-	-	-	-

Results – Data-Scarce Setting

Task	NLM / NLM w/ FRGR (Ours)				DLM / DLM w/ FRGR (Ours)				
Family Tree	Grad-ratio (%)↑	n=20 (%)↑	n=100 (%)↑	# Epochs↓	Grad-ratio (%)↑	n=20 (%)↑	n=100 (%)↑	# Epochs↓	
HasFather	100.00/100.00	100.00/100.00	100.00/100.00	5.50/ 5.50	100.00/100.00	100.00/100.00	100.00/100.00	23.20/27.00	
HasSister	100.00/100.00	100.00/100.00	100.00/100.00	13.20/ 13.30	100.00/100.00	100.00/100.00	100.00/100.00	67.20/68.00	
IsGrandparent	90.00/100.00	68.70/ <mark>77.5</mark> 1	63.40/72.26	127.90/ <mark>54.30</mark>	100.00/100.00	100.00/100.00	100.00/100.00	57.14/ <mark>56.00</mark>	
IsUncle	100.00/100.00	96.49/ <mark>98.05</mark>	62.53/ <mark>81.50</mark>	134.30/102.80	40.00/80.00	40.20/80.00	40.00/80.00	401.60/362.80	
IsMGUncle	70.00/100.00	68.52/ <mark>94.20</mark>	33.00/ <mark>48.00</mark>	356.30/ <mark>251.60</mark>	0.00/0.00	0.00/0.00	0.00/0.00	500.00/500.00	
Graph Reasoning	Grad-ratio (%)↑	n=10 (%)↑	n=20 (%)↑	# Epochs↓	Grad-ratio (%)↑	n=10 (%)↑	n=20 (%)↑	# Epochs↓	
1-OutDegree	100.00/100.00	100.00/100.00	100.00/100.00	52.90/61.10	100.00/100.00	100.00/100.00	100.00/100.00	47.20/48.00	
2-OutDegree	90.00/100.00	99.92/ <mark>100.00</mark>	99.72/ <mark>100.00</mark>	135.70/73.30	100.00/100.00	100.00/100.00	100.00/100.00	92.00/83.62	
4-Connectivity	100.00/100.00	100.00/100.00	100.00/100.00	151.60/195.10	100.00/100.00	100.00/100.00	100.00/100.00	82.80/68.00	
6-Connectivity	80.00/80.00	63.20/77.20	39.40/ <mark>70.80</mark>	63.75/ <mark>38.25</mark>	20.00/40.00	75.30/ <mark>86.30</mark>	59.80/ <mark>70.00</mark>	424.00/359.20	
Reinforcement Learning	Grad-ratio (%)↑	n=10 (%)↑	n=50 (%)↑	# Epochs↓	Grad-ratio (%)↑	n=10 (%)↑	n=50 (%)↑	# Epochs↓	
Sorting	100.00/100.00	100.00/100.00	100.00/100.00	28.20/24.60	-	-	-	-	
Path	70.00/100.00	98.94/ <mark>99.88</mark>	93.65/ <mark>99.80</mark>	304.60/206.00	-	-	-	-	
BlocksWorld	40.00/40.00	84.13/ <mark>90.13</mark>	45.93/ <mark>52.60</mark>	414.00/442.00	-	-	-	-	
	-						-		

Conclusion

- We propose a novel regularization framework called FRGR, which improves the optimization of the NLMs models by utilizing the root cause of error repetition.
- Our proposed method first summarizes the root cause of errors from the models' previous behavior with pattern mining techniques.
- FRGR penalizes the model if it repeats similar mistakes in future training iterations.
- Experimental results on multiple reasoning benchmarks demonstrate that FRGR can effectively improve the NLMs' performance, generalization, training efficiency, and data efficiency.