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B Graph Neural Networks (GNN5s)
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The aggregated local neighborhood can usually represent the graph semantics.
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B Graph Semantics (Substructures) in Different Granularities

There could exist different underlying patterns within a single graph, which makes it challenging to
train a single model to fits well on the data. And those knowledge could be in diversifying
granularities, which further increase the difficulties.

Atom Level Functional Group Level Molecule Level

Each level can used for the prediction tasks of different properties. Therefore, we need a model with
larger capacity and higher expressiveness power on graph substructure learning so that it can extract the
knowledge in different levels for better generalization ability.
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B How to Improve the Expressiveness Power on Graph Substructures?

&

Basically, current research on improving the expressive power of deep graph models on graph substructure
learning mainly focus on modifying model architectures to improve WL-Test,

B Hierarchical pooling operations: SubGNN, DiffPool and etc.
B Transformer backbone: Graphormer, SAN, GraphGPS and etc.
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network

Pooled network
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Pooled network
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Graph
classification

[NeurIPS 2018 ] Hierarchical Graph Representation Learning with Differentiable Pooling.
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[NeurIPS 2021]Do Transformers Really Perform Bad for Graph Representation?
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B How to Improve the Expressiveness Power on Graph Substructures?

Meanwhile, another solution could be combining existing deep graph models into the ensemble
learning and train each classifier to learn the graph semantics in different levels.

Weak Model Weak Model Weak Model Weak Model
#1 #2 #3 #4

Final Prediction
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B Challenges on Incorporating Ensemble Learning

B Higher Training and Inference Cost: Ensemble learning will naturally introduce extra
computation cost, so the proposed framework should not be too expensive for training and
inference.

B [oading Balance: Ensuring that all classifiers are utilized effectively can be challenging, as
some of them may become over-utilized while others remain under-utilized.

B Regularization on Multi-granularity: Each classifier is included to learn knowledge in different
granularities, so regularization should be applied to achieve this goal
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Methodology

B MGSE Framework

Self-supervised Prototypical Distillation Fine-tune
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Methodology

B MGSE Framework
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k=1 z:l

Manually setting different prototype number for K
student models to model the multi-granularity
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Methodology

B MGSE Framework

Self-supervised Prototypical Distillation Fine-tune
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B Experiment - Dataset

Table 4. Statistics of MoleculeNet datasets and protein-protein interaction network datasets.

Dataset #Graphs Avg #Nodes Avg Degree #Tasks (Class) Metric Category
ZINC15 2,000,000 26.62 57.72 - - biochemical
PPI-306K 306925 39.82 729.62 - - Protein-Protein Intersection Networks
BBBP 2,039 24.06 51.90 1 ROC-AUC biochemical
Tox21 7,813 18.57 38.58 12 ROC-AUC biochemical
ToxCast 8,576 18.78 38.62 617 ROC-AUC biochemical
SIDER 1,427 33.64 70.71 27 ROC-AUC biochemical
ClinTox 1,477 26.15 55.76 2 ROC-AUC biochemical
MUV 93,087 24.23 52.55 17 ROC-AUC biochemical
HIV 41,127 25.51 54.93 1 ROC-AUC biochemical
BACE 1,513 34.08 73.71 1 ROC-AUC biochemical
PPI 88000 49.35 890.77 40 ROC-AUC Protein-Protein Intersection Networks
Cora 1 2,708 5,429 7 Accuracy Citation Networks
Citeseer 1 3,327 4,732 6 Accuracy Citation Networks
Pubmed 1 19,717 44,338 3 Accuracy Citation Networks
ogbn-arxiv 1 169,343 1,166,243 40 Accuracy Citation Networks
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Experiment ‘§.

B Experiment - Main Results

Table 1. Performance (i.e., AUC) of state-of-the-art SSL-based GNN frameworks in the transfer learning setting, and improvements after

MGSE is applied. "-" means baseline results are not reported in the original papers. The percentage in the parentheses refers to the
percentage of performance improvement brought by MGSE.

Model | BBBP Tox 21 ToxCast SIDER ClinTox HIV BACE MUV PPI

No Pre-train | 65.844.5 74.040.8 634106 573416 58.044.4 753419 70.145.4 718425 648110

GraphCL 69.68:{:().57 73-87i0.66 62.40:{:().57 60.535:0.83 75-99;{:265 78.47:*:1‘22 75.383:144 69.805:2.56 67.883:0‘85
+MGSE 72.26.10.65 75.89.40.33 64.57 +0.34 61.44.10.68 78.67 +2.89 79.07 +.0.72 79.2240.03 71.4641 45 69.11.40.70

Perf. (1) +2.58 3.7%) +2.02(2.7%) +2.17(3.5%) +0.91(1.5%) +2.68 (3.5%) +0.60(0.8%) +3.84(5.1%) +1.66(2.4%) +1.23 (1.8%)

RGCL 71-42:{:0.66 75.201:0.34 63.33;{:0‘17 61.38i0,61 83.38&0,90 77-9010.80 76.033:0.77 76.66i0,99 -
+MGSE 71.65+0.78 76.8240.62 64.85.10.20 63.72.10.63 84.88.12.01 78.3310.85 77.4041.27 77.18.40.81 -

Perf. (1) +0.23 (0.3%) +1.62(22%) +1.52(2.4%) +2.34(3.8%) +1.50(1.8%) +0.43(0.6%) +1.37(1.8%) +0.52(0.7%) -

AD-GCL 70.00+1.07 76.5410.82 63.07 +0.72 63.28.10.79 79.78.+3.52 78.28.+0.97 78.5140.80 72.3041.61 68.83.41.26
+MGSE 70.44:{:().70 76.80i0.go 64.60:{:().59 63.50i0_92 83.055:254 78.91:5()_57 79.651:1‘07 74-32i0.85 68.951:0‘83

Perf. (1) +0.44 (0.6%) +0.26 (0.3%) +1.53 (2.4%) +0.22(0.3%) +3.27 (4.1%) +0.63(0.8%) +1.14(1.5%) +2.02(2.8%) +0.12(0.2%)

JOAO 70.2240.08 74.98.40.20 62.9410.48 59.97 +0.79 81.3242.49 76.73 1123 77.3440.48 71.66.4+1.43 64.43.11.38
+MGSE 71-93d:0.50 76.20350.33 64.261:0‘27 61-02:t0.86 83.30&2.44 77-5010.67 79.82&0.71 73-52&:0.62 65.37&0.96

Perf. (1) +1.71 24%) 1.22(1.6%) +1.32(2.1%) +1.05(1.8%) +1.98(2.4%) +0.77(1.0%) +2.48 (3.2%) +1.86(2.6%) +0.96 (1.5%)

GraphMAE 72‘0i0.6 75'5:t0.6 64.1&0.3 60'3i1.1 82.3&1_2 77.20:*:1_0 83.1&0.9 76'3i2.4 -
+MGSE 71.6240.51 76.5240.48 65.3140.38 62.46.1.0.52 84.4142 .20 78.03+0.70 82.9240.75 77.15+0.75 -

Perf. (1) 038 (-0.5%) +1.02(1.4%) +121(1.9%) +2.16(3.6%) +2.11(2.6%) +0.83(1.1%) -0.18(-02%) +0.85 (1.1%) -

GraphLoG 725408 757405 63.540.7 61.2411 76.743.3 778408 83.541.2 76.041.1 66.9541.32
+MGSE 72.573:1.13 76.84i0.58 64.883:().39 63.08i0_36 83-721202 78.645:()_30 83.18i1A24 77-22i0.94 68.26i1_06

Perf. (1) +0.07 (0.1%) +1.14(1.5%) +1.38(2.2%) +1.88(3.1%) +7.02(9.2%) +0.84(1.1%) -0.32(-04%) +1.22(1.6%) +1.31(2.0%)

Avg. Perf. (1) | 078 (1.1%)  +1.21 (1.6%) +1.52(24%) +1.43(2.3%) +3.09(3.9%) +0.68(0.9%) +1.39(1.8%) +1.36(1.9%) +0.91 (1.1%)

Our proposed method can generally further improve the
performance of existing graph SSL methods.
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B Experiment — Multi-Granularity Design

Table 2. Impacts of the multi-granularity design. Student Model Number

Dataset | BBBP Tox21 ToxCast  SIDER 801 T
Teacher 69.68:130_67 73~87io.66 62.40:;:0.57 60.535:0.83 ;\3
Multi-teacher 70451101 73851074 63.10£037 60.6820.70 579
=2
Granularity #1 (Dg = 2) 70.801970 74.64. 070 6175071 59.264¢50 q 784 L L
Granularity #2 (DK = 21) 71.685:0_77 75.48:1:0.50 63.10*0.33 60.88:}:0.65 8
Granularity #3 (DK = 50) 71.20:1:0.92 75.33&0_70 63.85&0.35 60-83:|:0.65 e 774 =" |
=@ ClinT
MGSE (Multi-granularity) I 7226065 75.89.033 6457034 6144 (s —_— B,_l\r(‘:; g
76— T - .
1 2 3 4

K

* Multi-granularity has more significant advantage on multi-label prediction
tasks which require more complex knowledge.

* Our design provides more flexibility to combine different granularities for
various tasks.

13



B Experiment — Model Ensemble Strategy

ROC-AUC(%)

The distribution shift between training and testing set may have an influence
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B Experiment — Prototype Visualization

BBBP Tox21
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The key substructure size of positive samples for discrimination of the BBBP dataset is larger than that
from the Tox21 dataset. This implies that the classification of BBBP relies on high-level abstract features,

whereas fine-grained substructure information is more helpful to the classification of the Tox21 dataset.
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